Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2100-2108    DOI: 10.3785/j.issn.1008-973X.2020.11.005
    
Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells
Yue-dong JIN(),Ru-hao WANG,Yang ZHAO*()
Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1737KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Experiment study and finite element simulation were conducted on 8 six-member basic structure with a pre-embedded-bolt joint designed for rectangular sections according to practical single-layer spherical latticed shells joints. The influence of the diameter of bolts, the distance of bolts, the wall thickness of node and the angle between members and node were studied during the test. Results show that the angle between members and node can be fulfilled by the hollow-six-prism design of node. The initial stiffness of specimens is weakened as well as the ultimate load, and the failure mode transforms from member-control mode to bolt-control mode with the decrease of bolts diameter and distance. The descent of node wall thickness has no effect on the initial stiffness of structure, but may decline the ultimate load. Element SOLID186 was applied in the finite element model while contact pair element CONTA174/TAEGE170 was used to simulate the contact effect. The load-displacement curves and the distribution of stress of finite element model fitted well with test results. The good fit between the finite element results and the test results indicates that the solid element finite element model with consideration of contact effect is reliable to predict the initial stiffness and ultimate load of specimens.



Key wordssingle-layer latticed shell      rectangular steel tube      assembly joint      static test      six-member basic structure     
Received: 02 December 2019      Published: 15 December 2020
CLC:  TU 393  
Corresponding Authors: Yang ZHAO     E-mail: jyd_ce@zju.edu.cn;ceyzhao@zju.edu.cn
Cite this article:

Yue-dong JIN,Ru-hao WANG,Yang ZHAO. Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2100-2108.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.005     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2100


单层网壳预埋螺栓装配式节点六杆模型试验

参考常见球面网壳节点,以螺栓直径、螺栓间距、节点体壁厚以及杆件与节点体夹角为主要参数,设计8个采用矩形截面预埋螺栓装配式节点的六杆模型,开展静力试验研究和有限元模拟. 试验结果表明,节点体中空六棱台设计可以有效实现杆件与节点体之间的角度连接;螺栓直径和螺栓间距的减小会导致试件刚度和极限荷载降低,并使得试件失效模式由杆件失效控制逐步过渡为螺栓失效控制;节点体壁厚的减小几乎不影响试件的初始刚度,但会降低试件的极限荷载. 采用SOLID186实体单元对六杆模型建模,并利用CONTA174/TARGE170接触对单元模拟接触效应, 有限元模型的荷载-位移曲线与试验结果较吻合,杆件处应力分布与试验结果接近. 该考虑接触效应的有限元模型可以较为准确地预测试件的初始刚度和极限荷载.


关键词: 单层网壳,  矩形钢管,  装配式节点,  静力试验,  六杆模型 
Fig.1 Schematic of six-member basic structure
Fig.2 Construction and dimensions of joint
Fig.3 Procedures of specimen assembling
试件编号 杆件截面规格/mm 高强螺栓规格 D /mm $ \theta $ /(°) t /mm
S1 120×60×4 M20 65 4 20
S2 120×60×4 M16 65 4 20
S3 120×60×4 M14 65 4 20
S4 120×60×4 M20 55 4 20
S5 120×60×4 M20 45 4 20
S6 120×60×4 M20 65 4 15
S7 120×60×4 M20 65 4 10
S8 120×60×4 M20 65 8 20
Tab.1 Dimensions of specimens
Fig.4 Gap between inner and outer nuts after assembling
组件 材料标号 σs /MPa σb /MPa E /GPa
节点体 45# 314.3 609.7 209.7
杆件端板 Q345b 352.3 477.7 204.3
矩形杆件 Q235b 327.0 389.5 207.0
Tab.2 Tensile test results of components of specimens
Fig.5 Scene of test setup
Fig.6 Layout of strain gauges of member one
Fig.7 Load-displacement curves of specimens
Fig.8 Bolt failure of specimen S3
Fig.9 Load-strain curves of specimens S1 and S8
试件编号 $ K $ /(kN?mm?1) ${P}_{{\rm{u}}}$ /kN $ {\eta }_{K} $ $ {\eta }_{P} $ $ \varepsilon $ /10?6
测点1 测点3
S1 37.51 238 1.00 1.00 ?6719 ?4217
S2 30.81 223 0.82 0.94 ?2893 ?1636
S3 20.11 105 0.73 0.44 ?708 ?650
S4 36.62 219 0.98 0.92 ?2825 ?1612
S5 22.81 194 0.61 0.82 ?1507 ?1419
S6 37.06 211 0.99 0.89 ?1767 ?1004
S7 38.20 191 1.01 0.80 ?1726 ?463
S8 56.92 320 1.52 1.34 ?5950 ?4461
Tab.3 Main test results of specimens
组件 单元类型 网格类型 网格尺寸 单元数量
节点体 SOLID186 四面体 2 101301
端板 SOLID186 四面体 6 11661
螺栓及螺母 SOLID186 六面体 2 37234
杆件 SOLID186 六面体 3 78153
接触单元 CONTA174/TARGE170 系统自动划分 18265
总计 ? ? 246614
Tab.4 Details of finite element model in ANSYS
Fig.10 Finite element model of specimens in ANSYS
Fig.11 Mesh of finite element model in ANSYS
Fig.12 Schematic of contact interface of finite element model
Fig.13 Axial stress distribution of specimens S1 and S8
[1]   董石麟, 邢丽, 赵阳, 等 矩形钢管焊接空心球节点承载能力的简化理论解与实用计算方法研究[J]. 土木工程学报, 2006, 39 (6): 12- 18
DONG Shi-lin, XING Li, ZHAO Yang, et al Simplified theoretical solution and practical calculation method for welded hollow spherical joints of rectangular hollow section members[J]. China Civil Engineering Journal, 2006, 39 (6): 12- 18
[2]   翁振江, 赵阳, 金跃东, 等 空间网格结构装配式节点分类与发展需求[J]. 建筑结构学报, 2018, 39 (3): 32- 38
WENG Zhen-jiang, ZHAO Yang, JIN Yue-dong, et al Classification and development demand of assembled connectors in space grid structures[J]. Journal of Building Structures, 2018, 39 (3): 32- 38
[3]   STEPHAN S, SANCHEZ-ALVAREZ J, KNEBEL K Reticulated structures on free-form surfaces[J]. Stahlbau, 2004, 73 (8): 562- 572
doi: 10.1002/stab.200490149
[4]   陈敏, 邢栋, 赵阳, 等 世博轴阳光谷钢结构节点试验研究及有限元分析[J]. 建筑结构学报, 2010, 31 (5): 34- 41
CHEN Min, XING Dong, ZHAO Yang, et al Experimental research and finite element analysis on joints of Sun Valley steel structure for the Expo Axis project[J]. Journal of Building Structures, 2010, 31 (5): 34- 41
[5]   舒赣平, 徐昆, 张鹏, 等. 空间自由曲面网壳钢结构的装配式节点: 201120560090.1[P]. 2012-12-05.
[6]   范峰, 马会环, 江鑫 空间结构半刚性C型节点优化及性能试验研究[J]. 建筑结构学报, 2016, 37 (3): 134- 140
FAN Feng, MA Hui-huan, JIANG Xin Optimization of spatial semi-rigid C-joint and experimental study on its rotational resistance[J]. Journal of Building Structures, 2016, 37 (3): 134- 140
[7]   范峰, 马会环, 沈世钊, 等. 装配式空间结构CP型节点: 201320749926.1[P]. 2014-04-23.
[8]   MA H H, REN S, FAN F Parametric study and analytical characterization of the bolt–column (BC) joint for single-layer reticulated structures[J]. Engineering Structures, 2016, 123: 108- 123
doi: 10.1016/j.engstruct.2016.05.037
[9]   MA H H, ISSA A M, FAN F, et al An experimental and numerical study of a semi-rigid bolted-plate connections (BPC)[J]. Thin-Walled Structures, 2015, 88: 82- 89
doi: 10.1016/j.tws.2014.11.011
[10]   FENG R Q, WANG X, CHEN Y, et al Static performance of double-ring joints for free form single-layer grid shells subjected to a bending moment and shear force[J]. Thin-Walled Structures, 2018, 131: 135- 150
doi: 10.1016/j.tws.2018.06.038
[11]   金跃东, 赵阳, 汪儒灏 矩形钢管单层网壳预埋螺栓装配式节点及其受弯性能试验研究[J]. 建筑结构学报, 2019, 40 (2): 153- 160
JIN Yue-dong, ZHAO Yang, WANG Ru-hao An assembly joint with pre-embedded bolts for single-layer rectangular hollow section latticed shells and experimental study on its bending behavior[J]. Journal of Building Structures, 2019, 40 (2): 153- 160
[12]   LOPEZ A, PUENTE I, SERNAS M A Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints[J]. Computers and Structures, 2007, 85 (7/8): 360- 374
[13]   张鹏. 适用于自由曲面网格结构新型装配式节点的试验与分析研究[D]. 南京: 东南大学, 2012.
ZHANG Peng. Experimental research and analysis on a new type of assembly joints for free-form grid structure [D]. Nanjing: Southeast University, 2012.
[14]   姜栋. 单层网壳节点半刚性及其对结构整体稳定性影响的研究[D]. 杭州: 浙江大学, 2016.
JIANG Dong. Study on joint semi-rigidity of single-layer reticulated shell and influence on overall stability [D]. Hangzhou: Zhejiang University, 2016.
[1] Xiao-shun WU,Chen-hui HUANG,Xin-tao WANG,Hua DENG. Fast measurement of static displacement field in cable-strut tensile structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1086-1094.
[2] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[3] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[4] ZHOU Si-hang, LIU Zhen-yu, TAN Jian-rong. Control method of concurrent operation for dismounting and
assembling simulation in cooperative maintenance
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2133-2140.