Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1086-1094    DOI: 10.3785/j.issn.1008-973X.2020.06.005
Civil Engineering     
Fast measurement of static displacement field in cable-strut tensile structure
Xiao-shun WU1(),Chen-hui HUANG1,Xin-tao WANG2,Hua DENG2,*()
1. School of Architectural and Surveying & Mapping Engineering (Nanchang), Jiangxi University of Science and Technology, Nanchang 330013, China
2. Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(718KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new expansion method was developed to quickly measure the static displacement field of cable-strut tensile structure. Under a specific load case, the static displacements of a random real structure could be approximated as linear combination of a few contribution modes. Thus, an iterative strategy was suggested to find optimal test locations; unbiased estimation for the combinatorial coefficients of contribution modes were taken to quickly acquire the full static displacements. Regarding the problem that structural modes are not fully orthogonal but used as basis vectors, the principle component analysis method was employed to validate the effectiveness of using structural modes as the replacement of orthogonal basis vectors in the degree-of-freedom space. An annular tensile canopy structure with a span of 200 meters was numerically investigated. Results show that the proposed method can provide high expansion accuracy. For the load case that has many loading locations but only a few contribution modes, the number of test locations can be effectively reduced so that the structural testing efficiency can be greatly improved. Furthermore, it is verified that structural modes contain complete information of orthogonal basis vectors in the degree-of-freedom space, indicating the effectiveness of expressing static displacements based on the linear combination of structural modes.



Key wordsspace structure      static testing      damage identification      mode shape expansion      structural health monitoring     
Received: 21 May 2019      Published: 06 July 2020
CLC:  TU 311  
  O 327  
  O 329  
Corresponding Authors: Hua DENG     E-mail: wuxiaoshun1981@163.com;denghua@zju.edu.cn
Cite this article:

Xiao-shun WU,Chen-hui HUANG,Xin-tao WANG,Hua DENG. Fast measurement of static displacement field in cable-strut tensile structure. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1086-1094.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.005     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1086


索杆张力结构静力位移场快速测量

提出一种新的静力位移扩展方法来快速测量索杆张力结构的静力位移场. 在特定荷载作用下,实际结构的静力位移可以近似表示为少数贡献模态的线性组合. 在此基础上,提出一种迭代策略来优选测点位置,以无偏估计贡献模态的组合系数,从而快速获得完整的静力位移. 针对结构模态不完全正交却被用作基向量的问题,引入主成分分析法来论证用结构模态代替自由度空间基向量的有效性. 以某200 m跨环形张力罩棚结构为例进行数值分析. 结果表明,所提方法具有较高的扩展精度,在加载点很多但贡献模态较少的荷载工况下能有效减少测点数量,从而大幅提高静力测试效率. 主成分分析结果表明,结构模态包含自由度空间完整的正交基信息,说明利用结构模态的线性组合来表示静力位移是有效的.


关键词: 空间结构,  静力测试,  损伤识别,  振型扩展,  结构健康监测 
Fig.1 Diagram of axisymmetric annular tensile canopy structure with span of 200 m
构件组号 构件类型 k Ak / mm2 tk / kN euk / mm
1 上环索 1~24 42 500 20 000 ±15
2 下环索 25~48 42 500 20 000 ±15
3 内侧压杆 49~72 6 225 -1 044.2 ±10
4 上部内侧径向索 73~96 10 525 5 324.5 ±15
5 下部内侧径向索 97~120 10 525 5 324.5 ±15
6 外侧压杆 121~144 7 165 ?1 392.3 ±10
7 上部外侧径向索 145~168 11 625 5 761.5 ±15
8 下部外侧径向索 169~192 11 625 5 761.5 ±15
Tab.1 Member grouping and structural parameters of annular tensile canopy structure
理想结构 实际结构
j |αj| γ j j |αj| γ j
9 2.223 3 1.000 0 9 2.346 4 1.000 0
98 0.862 2 0.387 8 98 0.908 6 0.387 2
148 0.030 6 0.013 8 148 0.032 2 0.013 7
153 0.021 3 0.009 6 153 0.022 5 0.009 6
134 0.009 5 0.004 3 134 0.011 6 0.004 9
Tab.2 First five ideal modes contributing most to express static displacements and combinatorial coefficients (load case 1)
理想结构 实际结构
j |αj| γ j j |αj| γ j
2 9.583 5 1.000 0 2 9.945 1 1.000 0
9 1.111 7 0.116 0 9 1.162 1 0.116 8
3 1.083 3 0.113 0 3 1.122 2 0.112 8
7 0.878 2 0.091 6 7 0.911 9 0.091 7
98 0.431 1 0.045 0 98 0.453 8 0.045 6
42 0.418 3 0.043 6 42 0.432 5 0.043 5
8 0.405 7 0.042 3 8 0.422 1 0.042 4
15 0.334 5 0.034 9 15 0.349 6 0.035 2
13 0.254 8 0.026 6 13 0.262 4 0.026 4
43 0.198 4 0.020 7 43 0.205 6 0.020 7
12 0.195 5 0.020 4 12 0.203 2 0.020 4
49 0.156 7 0.016 3 49 0.162 5 0.016 3
39 0.130 9 0.013 7 39 0.134 9 0.013 6
40 0.124 2 0.013 0 40 0.128 9 0.013 0
50 0.124 0 0.012 9 50 0.128 4 0.012 9
56 0.115 0 0.012 0 56 0.118 7 0.011 9
48 0.096 6 0.010 1 48 0.100 0 0.010 1
102 0.064 9 0.006 8 102 0.066 8 0.006 7
Tab.3 First eighteen ideal modes contributing most to express static displacements and combinatorial coefficients (load case 2)
δu / % 工况1 工况2
Pf1 / % Ps2 / % Pf2 / % Ps2 / %
0 100 0 100 0
10 100 0 100 0
20 91.6 8.4 100 0
30 57.6 42.4 100 0
40 44.4 55.6 100 0
50 39.2 60.8 100 0
Tab.4 Relationships between probability of contribution mode changes and member damage limits
Fig.2 Modal assurance criterion (MAC) values between contribution modes for two different load cases
ε / % 所提方法(4个测点) 所提方法(24个测点) 文献[16]方法(48个测点)
MACmin MVEmax / mm MACmin MVEmax / mm MACmin MVEmax / mm
0 0.999 8 0.001 7 0.999 8 0.001 6 1.000 0 0.000 5
1 0.999 4 0.003 3 0.999 7 0.001 8 0.999 8 0.001 6
2 0.998 4 0.004 8 0.999 4 0.002 6 0.999 2 0.002 9
3 0.996 1 0.007 3 0.999 1 0.003 3 0.998 0 0.004 6
4 0.995 4 0.009 3 0.998 4 0.004 5 0.997 2 0.005 8
5 0.992 8 0.012 7 0.997 8 0.005 5 0.994 2 0.007 8
6 0.991 2 0.014 2 0.994 5 0.006 5 0.992 0 0.008 6
7 0.987 9 0.015 6 0.993 9 0.007 3 0.990 9 0.009 8
8 0.981 7 0.017 3 0.992 8 0.008 7 0.987 4 0.011 2
Tab.5 Displacement expansion Results of real structure (load case 1)
ε / % 所提方法(18个测点) 所提方法(24个测点) 文献[16]方法(24个测点)
MACmin MVEmax / mm MACmin MVEmax / mm MACmin MVEmax / mm
0 0.999 5 0.010 5 0.999 6 0.010 5 1.000 0 0.001 5
1 0.998 9 0.016 9 0.999 4 0.014 3 0.999 9 0.005 6
2 0.997 4 0.024 8 0.998 0 0.018 8 0.999 4 0.011 3
3 0.995 8 0.030 5 0.997 3 0.024 4 0.999 0 0.017 5
4 0.992 4 0.041 8 0.996 1 0.031 6 0.997 9 0.021 5
5 0.990 3 0.044 4 0.995 8 0.034 2 0.997 1 0.025 6
6 0.985 4 0.058 2 0.992 3 0.044 1 0.994 5 0.032 5
7 0.980 3 0.068 3 0.991 2 0.047 6 0.992 6 0.037 8
8 0.977 8 0.072 1 0.986 7 0.053 5 0.990 5 0.042 7
Tab.6 Displacement expansion Results of real structure (load case 2)
[1]   CHEN Y, SUN Q, FENG J Group-theoretical form-finding of cable-strut structures based on irreducible representations for rigid-body translations[J]. International Journal of Mechanical Sciences, 2018, 144: 205- 215
doi: 10.1016/j.ijmecsci.2018.05.057
[2]   周锦瑜, 陈务军, 胡建辉, 等 考虑预应力作用的索杆张力结构冗余度分析[J]. 上海交通大学学报, 2017, 51 (7): 774- 780
ZHOU Jin-yu, CHEN Wu-jun, HU Jian-hui, et al Redundancy investigation of pre-tensioning cable-strut systems considering the effect of pre-stress[J]. Journal of Shanghai Jiaotong University, 2017, 51 (7): 774- 780
[3]   夏巨伟. 索杆张力结构的预张力偏差和刚度解析[D]. 杭州: 浙江大学, 2014.
XIA Ju-wei. Analysis of pretension deviation and stiffness of cable-strut tensile structures[D]. Hangzhou: Zhejiang University, 2014.
[4]   陈志华, 楼舒阳, 闫翔宇, 等 天津理工大学体育馆新型复合式索穹顶结构风振效应分析[J]. 空间结构, 2017, 23 (3): 21- 29
CHEN Zhi-hua, LOU Shu-yang, YAN Xiang-yu, et al Time-history analysis of wind vibration response for the cable dome of gymnasium at Tianjin University of Technology[J]. Spatial Structures, 2017, 23 (3): 21- 29
[5]   DENG H, ZHANG M, LIU H, et al Numerical analysis of the pretension deviations of a novel crescent-shaped tensile canopy structural system[J]. Engineering Structures, 2016, 119: 24- 33
doi: 10.1016/j.engstruct.2016.04.005
[6]   卫军, 杜永潇, 梁曼舒 梁结构疲劳刚度退化对模态频率的影响[J]. 浙江大学学报: 工学版, 2019, 53 (5): 899- 909
WEI Jun, DU Yong-xiao, LIANG Man-shu Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (5): 899- 909
[7]   NI Y C, ZHANG F L Fast Bayesian frequency domain modal identification from seismic response data[J]. Computers and Structures, 2019, 212: 225- 235
doi: 10.1016/j.compstruc.2018.08.018
[8]   伍晓顺, 邓华, 孙桐海 基于优化阶跃激励的索穹顶密集模态测试方法[J]. 浙江大学学报: 工学版, 2018, 52 (2): 288- 296
WU Xiao-shun, DENG Hua, SUN Tong-hai Method for identifying modal parameters of closely spaced modes of cable domes by optimizing step excitations[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 288- 296
[9]   KORDKHEILI S A H, MASSOULEH S H M, HAJIREZAYI S, et al Experimental identification of closely spaced modes using NExT-ERA[J]. Journal of Sound and Vibration, 2018, 412 (1): 116- 129
[10]   SEYEDPOOR S M, YAZDANPANAH O An efficient indicator for structural damage localization using the change of strain energy based on static noisy data[J]. Applied Mathematical Modelling, 2014, 38: 2661- 2672
doi: 10.1016/j.apm.2013.10.072
[11]   郭彦林, 田广宇, 王昆, 等 一种基于静力位移测量值的车辐式屋盖结构索力识别方法[J]. 工程力学, 2013, 30 (2): 96- 103
GUO Yan-lin, TIAN Guang-yu, WANG Kun, et al A cable force estimation method for spoke structural roof based on static displacement measurement[J]. Engineering Mechanics, 2013, 30 (2): 96- 103
[12]   田广宇, 郭彦林, 张博浩, 等 车辐式屋盖结构的一种索力识别方法的误差研究[J]. 工程力学, 2013, 30 (3): 126- 132
TIAN Guang-yu, GUO Yan-lin, ZHANG Bo-hao, et al Reasearch on error of a cable force estimation method for spoke structural roofs[J]. Engineering Mechanics, 2013, 30 (3): 126- 132
[13]   CIAMBELLA J, PAU A, VESTRONI F Modal curvature-based damage localization in weakly damaged continuous beams[J]. Mechanical Systems and Signal Processing, 2019, 121: 171- 182
doi: 10.1016/j.ymssp.2018.11.012
[14]   BATOU A A sensitivity-based one-parameter-at-a-time model updating method[J]. Mechanical Systems and Signal Processing, 2019, 122: 247- 255
doi: 10.1016/j.ymssp.2018.12.025
[15]   WU X, DENG H, ZHU D Mode shape expansions for the dynamic testing of cable domes considering random pretension deviations[J]. Journal of Sound and Vibration, 2017, 394 (4): 155- 170
[16]   GUYAN R J Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3: 380- 380
doi: 10.2514/3.2874
[17]   欧阳煜, 徐超, 杨万锋 基于静力挠度的梁结构损伤识别两阶段方法[J]. 力学季刊, 2017, 38 (3): 458- 467
OUYANG Yu, XU Chao, YANG Wan-feng A two-stage method for beam damage identification based on static deflection[J]. Chinese Quarterly of Mechanics, 2017, 38 (3): 458- 467
[18]   邓华, 姜群峰 环形张力索桁罩棚结构施工过程的形态分析[J]. 土木工程学报, 2005, 38 (6): 1- 7
DENG Hua, JIANG Qun-feng Shape analysis of annular tensile cable-truss canopy structures[J]. China Civil Engineering Journal, 2005, 38 (6): 1- 7
[19]   伍晓顺, 邓华, 徐思东, 等 索杆张力结构静力位移的近似模态表达与间接测量[J]. 空间结构, 2018, 24 (2): 41- 47
WU Xiao-shun, DENG Hua, XU Si-dong, et al Dynamic-mode based approximate expression and indirect measurement of static deflection of cable-strut tensile structures[J]. Spatial Structures, 2018, 24 (2): 41- 47
[20]   UDWADIA F E Methodology for optimum sensor locations for parameter identification in dynamic systems[J]. Journal of Engineering Mechanics, 1994, 120: 368- 390
doi: 10.1061/(ASCE)0733-9399(1994)120:2(368)
[21]   AVITABILE P. A review of modal model correlation techniques [C] // Proceedings of NAFEM World Congress. Rhode Island: [s.n.], 1999.
[22]   FOX R L, KAPOOR M P Rates of change of eigenvalues and eigenvectors[J]. AIAA Journal, 1969, 6 (12): 2426- 2429
[23]   TRAN N M, BURDEJOVA P, OSPIENKO M, et al Principal component analysis in an asymmetric norm[J]. Journal of Multivariate Analysis, 2019, 171: 1- 21
doi: 10.1016/j.jmva.2018.10.004
[24]   中华人民共和国住房和城乡建设部. 索结构技术规程: JGJ 257-2012 [S]. 北京: 中国建筑工业出版社, 2012.
[25]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢拉杆: GB/T 20934-2016 [S]. 北京: 中国标准出版社, 2016.
[26]   中华人民共和国国家质量监督检验检疫总局, 中华人民共和国建设部. 钢结构工程施工质量验收规范: GB 50205-2001 [S]. 北京: 中国建筑工业出版社, 2002.
[27]   方圣恩, 陈杉, 董照亮 结构概率损伤识别的改进近似贝叶斯计算[J]. 振动工程学报, 2019, 32 (2): 224- 233
FANG Shen-en, CHEN Shan, DONG Zhao-liang Improved approximate Bayesian computation for probabilistic damage identification of structures[J]. Journal of Vibration Engineering, 2019, 32 (2): 224- 233
[1] Yu ZHOU,Sheng-kui DI,Chang-sheng XIANG,Wan-run LI. Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 879-888.
[2] Xiao-shun WU,Ju-wei XIA,Yue-fang HU. Damage localization of space trusses based on indicators expressed by cross-model modal strain energy[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 248-256.
[3] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[4] SUN Ke, ZHANG Yan qing. Damage identification of small radius curved bridge based on curvature of displacement influence line[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 727-734.
[5] XIE Zhong-kai, LIU Guo-hua. Application of approximate entropy in concrete structures damage identification[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 456-464.
[6] XIE Zhong-kai, LIU Guo-hua, WU Zhi-gen. Dynamic damage identification for beam structures
based on transfer entropy
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1880-1886.
[7] CAI Jin-biao, CHEN Yong, YAN Wei. Three-dimensional finite element analysis based electromechanical
impedance model and its application
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2342-2347.
[8] LI Wei, XUE Meng-De, XIANG Zhi-Hai. Thermal-dynamic stability analysis of structural appendages attached to satellite[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(7): 1288-1292.