1. Institute of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 2. School of Mechanical and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
A drill pipe fault diagnosis model based on one-dimensional convolutional neural network was proposed in order to diagnose the fault type of drill pipe failure early; the structure as well as the parameter of the model were designed and analyzed in detail. Referring to the existing convolutional neural network model, the layer number of the convolutional layer as well as the pooling layer of the model, the size of the convolution kernel and the sliding step length were designed combining with the working characteristics of the drill pipe and the principle of the receptive field. The model eliminates the process of extracting fault signal features and has higher diagnostic accuracy than previous drill stem fault diagnosis. Meanwhile, the model has strong adaptability and anti-noise ability under different speed conditions and different soil conditions.
Fig.2Diagram of one-dimensional convolutional neural network structure
Fig.3Drill pipe simulation experiment platform
Fig.4Schematic diagram of drill pipe failure and nut loose
故障类型
故障程度
标签
数据集A
数据集B
数据集C
训练集
验证集
测试集
训练集
验证集
测试集
训练集
验证集
测试集
正常
无
L1
420
140
140
420
140
140
420
140
140
松动螺母
2颗
L2
420
140
140
420
140
140
420
140
140
4颗
L3
420
140
140
420
140
140
420
140
140
6颗
L4
420
140
140
420
140
140
420
140
140
断裂切口长度
56 mm
L5
420
140
140
420
140
140
420
140
140
112 mm
L6
420
140
140
420
140
140
420
140
140
168 mm
L7
420
140
140
420
140
140
420
140
140
合计
2 940
980
980
2 940
980
980
2 940
980
980
Tab.2Distribution of sample numbers in drill pipe fault data set
Fig.5Curve diagram of 1DCNN model training accuracy
Fig.6Curve diagram of 1DCNN model training loss
实际 预测
L1
L2
L3
L4
L5
L6
L7
L1
1.000
0
0
0
0
0
0
L2
0
0.975
0
0.025
0
0
0
L3
0
0
1.000
0
0
0
0
L4
0
0.013
0
0.987
0
0
0
L5
0
0
0.038
0
0.962
0
0
L6
0
0
0
0
0
1.000
0
L7
0
0
0
0
0
0
1.000
Tab.3Diagnosis results of 1DCNN model under operating condition of 20 r/min
实际 预测
L1
L2
L3
L4
L5
L6
L7
L1
1.000
0
0
0
0
0
0
L2
0
1.000
0
0
0
0
0
L3
0
0.013
0.987
0
0
0
0
L4
0
0.013
0
0.962
0
0.025
0
L5
0
0
0
0
0.987
0.013
0
L6
0
0
0
0
0
1.000
0
L7
0
0
0
0
0.025
0
0.975
Tab.4Diagnosis results of 1DCNN model under operating condition of 35 r/min
实际 预测
L1
L2
L3
L4
L5
L6
L7
L1
1.000
0
0
0
0
0
0
L2
0
1.000
0
0
0
0
0
L3
0
0
1.000
0
0
0
0
L4
0
0
0.013
0.987
0
0
0
L5
0.013
0
0.025
0
0.950
0
0.013
L6
0
0
0
0
0
1.000
0
L7
0
0.013
0
0
0
0.050
0.937
Tab.5Diagnosis results of 1DCNN model under operating condition of 50 r/min
算法
accuracy(×100%)
20 r/min
35 r/min
50 r/min
小波-SVM
85.0±2.3
87.5±3.1
91.0±2.8
粒子群-SVM
87.2±4.3
88.3±2.6
88.7±1.8
EWT-BP
80.0±5.0
83.2±3.7
81.7±3.2
EMD-BP
81.7±1.8
83.3±1.9
85.6±2.1
1DCNN
98.9±0.5
98.7±0.2
98.7±0.3
Tab.6Comparison of fault diagnosis accuracy by different models
训练数据
测试数据
σ/%
σave/%
A
B
91.3
91.5
C
94.5
B
A
90.1
C
89.2
C
A
92.7
B
91.6
Tab.7Diagnosis results for rotational speed adaptability of 1DCNN model
材质
σ/%
20 r/min
35 r/min
50 r/min
粗砂
98.9
99.3
98.5
C10水泥
99.1
97.8
97.4
C20水泥
97.9
98.3
98.5
C30水泥
98.9
98.7
98.7
Tab.8Comparison of fault diagnosis accuracy by 1DCNN model under different soil conditions
Fig.7Schematic diagram of original sample, noise sample and noise fusion sample
SNR
σ/%
SNR
σ/%
3
99.5
?1
98.1
2
98.9
?2
93.3
1
98.6
?3
86.9
0
98.3
?4
76.3
Tab.9Diagnostic results for anti-noise ability of 1DCNN model
[1]
张震. 旋挖钻机钻杆失效研究[D]. 西安: 长安大学, 2011. ZHANG Zhen. Failure of the drill pipe rotary drilling rig [D]. Xi’an: Chang’an University, 2011.
[2]
YU X, DONG F, DING E, et al Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection[J]. IEEE Access, 2018, 6: 3715- 3730
doi: 10.1109/ACCESS.2017.2773460
[3]
RAFIEE J, RAFIEE M A, TSE P W Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J]. Expert Systems with Applications, 2010, 37 (6): 4568- 4579
doi: 10.1016/j.eswa.2009.12.051
[4]
SINGH D S, ZHAO Q Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines[J]. Mechanical Systems and Signal Processing, 2016, 81: 202- 218
doi: 10.1016/j.ymssp.2016.03.007
[5]
LI H, ZHANG Y. Bearing faults diagnosis based on EMD and Wigner-Ville distribution [C] // World Congress on Intelligent Control and Automation. Dalian: IEEE, 2006: 5447-5451.
[6]
GAN M, WANG C, ZHU C Multiple-domain manifold for feature extraction in machinery fault diagnosis[J]. Measurement, 2015, 75: 76- 91
doi: 10.1016/j.measurement.2015.07.042
[7]
唐赛, 何荇兮, 张家悦, 等 基于长短期记忆网络的轴承故障识别[J]. 汽车工程学报, 2018, 8 (4): 297- 303 TANG Sai, HE Xing-xi, ZHANG Jia-yue, et al Bearing fault identification based on long short-term memory networks[J]. Chinese Journal of Automotive Engineering, 2018, 8 (4): 297- 303
doi: 10.3969/j.issn.2095-1469.2018.04.09
[8]
HINCHI A Z, TKIOUAT M Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127: 123- 132
doi: 10.1016/j.procs.2018.01.106
[9]
ZHAO R, YAN R, WANG J, et al Learning to monitor machine health with convolutional bi-directional LSTM networks[J]. Sensors, 2017, 17 (2): 273
doi: 10.3390/s17020273
[10]
杜振. 基于EMD原理与BP神经网络的旋挖钻机钻杆故障识别方法[D]. 杭州: 浙江大学, 2018. DU Zhen. Drill pipe fault identification method of rotaty drilling rig based on EMD principle and BP neural network [D]. Hangzhou: Zhejiang University, 2018.
[11]
张少奇. 基于小波变换与SVM的钻杆故障诊断[D]. 杭州: 浙江大学, 2018. ZHANG Shao-qi. Drill pipe fault diagnosis based on wavelet transform and SVM [D]. Hangzhou: Zhejiang University, 2018.
[12]
LE C Y, BOSER B E, DENKER J S, et al Handwritten digit recognition with a back-propagation network[J]. Advances in neural information processing systems, 1990, 396- 404
[13]
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
[14]
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C] // Proceedings of the IEEE conference on computer vision and pattern recognition. Columbus: IEEE, 2014: 580-587.
[15]
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C] // Advances in Neural Information Processing Systems. Montreal: [s. n.] 2014: 2672-2680.
[16]
KRIZHEVSKY A, SUTSKEYER I, HINTON G E. Imagenet classification with deep convolutional neural networks [C] // Advances in neural information processing systems. Lake Tahoe: IEEE, 2012: 1097-1105.
[17]
BOUVRIE J. Notes on convolutional neural networks[R/OL]. Massachusetts Institute of Technology. (2016-09-15)[2018-04-20]. http://cogprints.org/5869/1/cnn_tutorial.pdf.
[18]
LECUN Y, BOTTOU L, BENGIO Y, et al Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324
doi: 10.1109/5.726791
[19]
HUBEL D H, WIESEL T N Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160 (1): 106- 154
doi: 10.1113/jphysiol.1962.sp006837
[20]
SIMONYAN K, ZISSERMAN A. very deep convolutional networks for large-scale image recognition [C] // Computer Vision and Pattern Recognition. Columbus: CVPR, 2014: 1409-1556.
[21]
SHEIKH N, KEFATO Z T, MONTRESOR A. Semi-Supervised heterogeneous information network embedding for node classification using 1D-CNN [C] // 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS). Valencia: IEEE, 2018: 177-181.