Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 475-482    DOI: 10.3785/j.issn.1008-973X.2020.03.007
Mechanical Engineering     
Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys
Cong-cong FU1(),Xing-fei LI1,*(),Shao-bo YANG1,Hong-yu LI2,Wen-bin TAN3
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
2. School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3. Qingdao Xingyou Intelligent Technology Co. Ltd, Qingdao 266041, China
Download: HTML     PDF(1027KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The frequency splitting phenomenon of inductive coupled power transmission (ICPT) system based on ocean buoys was analyzed, aiming at the problem that the maximum output power of the ICPT system was affected by the inductive coupling frequency offset. The mutual inductance model of ICPT system was established. Considering the coil resonance frequency and the coupling coefficient, the output power was taken as the key research object. And the relation expression between the output power and the coupling coefficient, the operating frequency in the ICPT system was presented. Meanwhile, the generalized influence of coupling coefficients and operating frequency was studied by numerical analysis. It is concluded that matching the coupling coefficients between the coils can avoid frequency splitting; the power and efficiency reach the maximum at the resonant frequency. In addition, if the system coupling coefficient is fixed, the system transmission performance can be optimal by adjusting the. operating frequency.



Key wordsinductively coupled power transmission (ICPT) system      resonant frequency      frequency splitting      output power      transmission efficiency     
Received: 09 May 2019      Published: 05 March 2020
CLC:  TM 72  
Corresponding Authors: Xing-fei LI     E-mail: FuCongcong@tju.edu.cn;lixftju@sina.com
Cite this article:

Cong-cong FU,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Wen-bin TAN. Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 475-482.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/475


海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析

为探究感应耦合电能传输(ICPT)系统中的频率偏移是否会对系统的最大输出功率产生影响,综合考虑线圈谐振频率、耦合系数,通过建立互感模型对基于海洋浮标的ICPT系统的频率分裂现象进行分析,选择输出功率作为重点研究对象,推导出在ICPT系统中输出功率与耦合系数,工作频率之间的关系表达式. 通过数值分析研究耦合系数、工作频率对频率分裂影响的一般化关系,并通过实验验证其结论. 结果表明:对线圈之间的耦合系数进行匹配,可以避免系统发生频率分裂,且在固有谐振频率处输出功率和效率达到最大值;若系统耦合系数固定,通过调整工作频率,可以使系统传输性能达到最优.


关键词: 感应耦合电能传输(ICPT)系统,  谐振频率,  频率分裂,  输出功率,  传输效率 
Fig.1 Structure diagram of inductively coupled power transmission(ICPT)system based on ocean buoys
Fig.2 Diagram of model of ICPT system
Fig.3 Equivalent circuit of ICPT system
参数 数值 单位 参数 数值 单位
f0 24.8 kHz C1 330 nF
L1 124.5 μH C2 156 nF
L4 124.5 μH C3 330 nF
L2 15.0 μH R1 0.24 Ω
L5 124.5 μH R2 0.60 Ω
L3 124.5 μH R3 0.24 Ω
RL 50 Ω Vi 12 V
Tab.1 Parameters of ICPT experimental system
Fig.4 Relation of power frequency and underwater coupling coefficient under different abovewater coupling coefficients
Fig.5 Relation of power with frequency and above water coupling coefficient under different underwater coupling coefficients
Fig.6 Relation of power with abovewater and underwater coupling coefficient under different frequencies
Fig.7 ICPT experimental system
Fig.8 Relation between system output power and frequency under different abovewater coupling coefficients
Fig.9 Relation between system efficiency and frequency under different abovewater coupling coefficients
[1]   CHARETTE M A, SMITH W H F The volume of earth’s ocean[J]. Oceanography, 2010, 23 (2): 112- 114
doi: 10.5670/oceanog.2010.51
[2]   张强, 王玉峰 海洋浮标的非接触式电能与数据传输[J]. 仪器仪表学报, 2010, 31 (11): 2615- 2621
ZHANG Qiang, WANG Yu-feng Noncontact power and data delivery for ocean observation mooring buoy[J]. Chinese Journal of Scientific Instrument, 2010, 31 (11): 2615- 2621
[3]   王南朔, 李醒飞, 房诚, 等 浮标水下传感器非接触供电及通讯系统设计[J]. 电源技术, 2017, 41 (1): 131- 133
WANG Nan-shuo, LI Xing-fei, FANG Cheng, et al Design of contactless power and data transmission system for buoy's underwater sensors[J]. Chinese Journal of Power Sources, 2017, 41 (1): 131- 133
doi: 10.3969/j.issn.1002-087X.2017.01.041
[4]   李泽松. 基于电磁感应原理的水下非接触式电能传输技术研究[D]. 杭州: 浙江大学, 2010.
LI Ze-song. Underwater contactless power transmission based on electromagnetic induction[D]. Hangzhou: Zhejiang University, 2010.
[5]   LI Z, SONG K, WEI G, et al A 3 kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2016, 32 (5): 3301- 3316
[6]   刘溯奇, 谭建平, 薛少华, 等 多负载无线电能传输系统耦合机理特性分析[J]. 电力系统自动化, 2016, 40 (18): 84- 90
LIU Su-qi, TAN Jian-ping, XUE Shao-hua, et al Analysis on coupling mechanism characteristics of multi-load wireless power transmission system[J]. Automation of Electric Power Systems, 2016, 40 (18): 84- 90
doi: 10.7500/AEPS20160104001
[7]   FANG C, LI X, XIE Z, et al Design and optimization of an inductively coupled power transfer system for the underwater sensors of ocean buoys[J]. Energies, 2017, 10 (1): 8
[8]   XU J, LI X, XIE Z, et al Research on a multiple-receiver inductively coupled power transfer system for mooring buoy applications[J]. Energies, 2017, 10 (4): 519
doi: 10.3390/en10040519
[9]   林杰. 浮标系统非接触电能高效耦合及数据传输方法的研究[D]. 天津: 天津大学, 2012.
LIN Jie. Research on high coupling efficiency contactless power and data transmission for buoy[D]. Tianjin: Tianjin University, 2012.
[10]   李阳, 杨庆新, 闫卓, 等 磁耦合谐振式无线电能传输系统的频率特性[J]. 电机与控制学报, 2012, 16 (7): 7- 11
LI Yang, YANG Qing-xin, YAN Zhuo, et al Characteristic of frequency in wireless power transfer system via magnetic resonance coupling[J]. Electric Machines and Control, 2012, 16 (7): 7- 11
doi: 10.3969/j.issn.1007-449X.2012.07.002
[11]   李中启, 黄守道, 易吉良, 等 磁耦合谐振式无线电能传输系统频率分裂抑制方法[J]. 电力系统自动化, 2017, 41 (2): 21- 27
LI Zhong-qi, HUANG Shou-dao, YI Ji-liang, et al A method of preventing frequency splitting in magnetic coupling resonant wireless power transfer system[J]. Automation of Electric Power Systems, 2017, 41 (2): 21- 27
doi: 10.7500/AEPS20161008010
[12]   陈珂睿, 王泽忠, 刘胜南, 等 非接触式电能传输系统功率及效率影响因素[J]. 电网技术, 2014, 38 (3): 807- 811
CHEN Ke-rui, WANG Ze-zhong, LIU Sheng-nan, et a Impacting factors on power and efficiency of inductively coupled power transfer system[J]. Power System Technology, 2014, 38 (3): 807- 811
[13]   代小磊, 牛王强, 孟祥成 非接触电能传输(CPT)系统频率分裂现象分析[J]. 电源学报, 2012, (3): 67- 71
DAI Xiao-lei, NIU Wang-qiang, MENG Xiang-cheng Analysis of the frequency splitting phenomenon in con tactless power transfer systems[J]. Journal of Power Supply, 2012, (3): 67- 71
[14]   李新恒, 龚立娇, 冯力, 等 三线圈磁耦合谐振式无线电能传输系统频率特性分析[J]. 工矿自动化, 2018, 44 (3): 91- 96
LI Xin-heng, GONG Li-jiao, FENG Li, et al Analysis of frequency characteristics of three-coil magnetic coupling resonant wireless power transmission system[J]. Industry and Mine Automation, 2018, 44 (3): 91- 96
[15]   路倩云, 王文清, 翟志颖, 等 三线圈无线输电系统的频率分裂特性和抑制方法[J]. 电气工程学报, 2018, 13 (5): 27- 32
LU Qian-yun, WANG Wen-qing, ZHAI Zhi-ying, et al Frequency splitting characteristics and suppression method of three-coil wireless transmission system[J]. Journal of Electrical Engineering, 2018, 13 (5): 27- 32
[16]   李阳, 张雅希, 杨庆新, 等 磁耦合谐振式无线电能传输系统最大功率效率点分析与实验验证[J]. 电工技术学报, 2016, 31 (2): 18- 24
LI Yang, ZHANG Ya-xi, YANG Qing-xin, et al Analysis and experimental validation on maximum power and efficiency in wireless power transfer system via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2016, 31 (2): 18- 24
doi: 10.3969/j.issn.1000-6753.2016.02.003
[17]   李阳, 尹建斌, 杨庆新, 等 非对称耦合线圈内阻与品质因数对传输功率与效率及其频率分裂的影响[J]. 电工技术学报, 2018, 33 (12): 2742- 2750
LI Yang, YIN Jian-bin, YANG Qing-xin, et al Influence of internal resistance and quality factor on transfer power and efficiency and frequency splitting[J]. Transactions of China Electrotechnical Society, 2018, 33 (12): 2742- 2750
[18]   SAMPLE A P, MEYER D A, SMITH J R Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (2): 544- 554
doi: 10.1109/TIE.2010.2046002
[19]   李庚午. 磁耦合谐振式无线电能传输系统传输功效的优化与研究[D]. 沈阳: 沈阳工业大学, 2017.
LI Geng-wu. Optimization and research of transmission efficiency of magnetically coupled resonant wireless power transmission system[D]. Shenyang: Shenyang University of Technology, 2017.
[1] Ai-bing ZHANG,Wen-kai YAN,Dan-dan PANG,Bao-lin WANG,Ji WANG. Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 947-953.
[2] TIAN Yan ping, JIN Xiao ling, WANG Yong. Strengthening phenomenoninspirited optimum design of  random vibration energy harvester[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 934-940.
[3] CHEN Xu-dong, CHENG Fang, FENG Pan. Dynamic performance analysis of high-order control system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 141-148.
[4] YU Ming-hu, ZHANG Yu-qiu, LU Qin-fen, YE Yun-yue. Design of moving-magnet transverse-flux linear oscillatory motor[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 206-211.
[5] TANG Ke, LEI Tian, LIN Xiao-gang, JIN Tao. Performance comparison of thermoacoustic engine with
gas-liquid and gas oscillation
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1244-1247.
[6] YU Ming-hu, LU Qin-fen, YE Yun-yue, XIA Yong-ming. High efficiency control strategy for linear oscillatory
motor with two separated stators
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 799-803.