Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1407-1414    DOI: 10.3785/j.issn.1008-973X.2019.07.021
Traffic Engineering, Civil Engineering     
Strategy for partition of space frames erected by mechanism method
Wei WANG1(),Hua DENG1,*(),Li HUANG2
1. Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
2. Department of Real Estate and Engineering Management, Zhejiang University of Finance and Economics, Hangzhou 310018, China
Download: HTML     PDF(1255KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A geometrical partitioning strategy was proposed to form the mechanism for space frames erected by "mechanism method", typical of Pantadome. The square sum of the elongations of all structural members was adopted as the index to describe the structural deformation and expressed as the quadratic form of nodal displacements. Considering that the partitioned mechanism must implement rigid body displacement from the design configuration to the working surface, i.e. moving trend, the eigenvectors of the quadratic matrix could be used to approximately construct the rigid body displacement. If the displacements which were constantly constructed using those eigenvectors with smaller eigenvalue as well as smaller angle to the moving trend, the structure would theoretically move towards the working surface with small deformations. Taking the direction of moving trend as the initial vector, these eigenvectors could be obtained by solving the Ritz vectors of the inverse of the quadratic matrix. From the design configuration, the space frame was forced to move towards and finally approached the working surface with the estimated displacement. The structural deformation could be generally controlled at a lower level. For the final configuration closest to the working surface, those areas distinctly deformed relative to the design configuration were identified to be the partitioning boundary of the space frame. A vaulted spatial truss and a space frame were adopted as the illustrative examples to prove the validity of the partitioning strategy.



Key wordsmechanism erection method      Pantadome      space frame      partitioning strategy      rigid body motion     
Received: 29 May 2018      Published: 25 June 2019
CLC:  TU 393  
Corresponding Authors: Hua DENG     E-mail: 11212035w@zju.edu.cn;denghua@zju.edu.cn
Cite this article:

Wei WANG,Hua DENG,Li HUANG. Strategy for partition of space frames erected by mechanism method. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1407-1414.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.021     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1407


适用于“机构施工法”的网格结构划分策略

针对以攀达穹顶为代表的“机构施工法”,提出对网格结构进行划分以形成机构的几何学策略. 以结构中所有杆件伸长量的平方和作为描述结构变形程度的指标,发现该指标可以表示为位移的二次型. 考虑到划分后的机构应具备从设计构型到安装面(运动趋势)产生刚体位移的能力,尝试用该二次型矩阵的特征向量来近似构造该刚体位移. 理论上发现,选择特征值较小且与运动趋势方向夹角较小的特征向量来构造位移,可以使结构在变形较小的情况下向安装面运动. 将运动趋势方向作为初始向量,这些特征向量可以通过求解二次型矩阵逆的里兹向量获得. 从设计构型开始,强迫网格结构按所构造的位移方向小幅度运动并逼近安装面,不仅可以控制结构的变形始终处于较低的水平,而且那些相对于设计构型变形较大的区域逐步凸显并成为可实施划分的区域. 通过一个立体拱架和一个空间网格结构算例,说明了以上划分策略的有效性.


关键词: 机构施工法,  攀达穹顶,  网格结构,  划分策略,  刚体运动 
Fig.1 Quantitative description for local deformation of node i
Fig.2 Vaulted spatial truss and its eigenvalues at design configuration
Fig.3 Final configuration and its distribution of ||E||2
Fig.4 Partitioned vaulted spatial truss and its final configuration
Fig.5 Variations of L when vaulted truss moving along dr and da, respectively
Fig.6 Geometries of cutting shape space frame and assembly surface
Fig.7 Nearest configuration of space frame to assembly surface
Fig.8 Distribution of ||E||2 on upper-chord layer of space frame
Fig.9 Partition of cutting shape space frame
Fig.10 Mechanism converted by space frame and its final configuration
[1]   KAWAGUCHI M Design problems of long span spatial structures[J]. Engineering Structures, 1991, 13 (2): 144- 163
doi: 10.1016/0141-0296(91)90048-H
[2]   川口卫 奈良大会堂与攀达穹顶体系[J]. 空间结构, 1998, 4 (4): 56- 57
KAWAGUCHI M The Nara Hall and the structural system of Pantadome[J]. Spatial Structures, 1998, 4 (4): 56- 57
[3]   陈志华 攀达穹顶结构体系[J]. 建筑知识, 2000, 20 (5): 31- 32
CHEN Zhi-hua The structural system of the Pantadome[J]. Architectural Knowledge, 2000, 20 (5): 31- 32
[4]   王小盾. 攀达穹顶结构体系的理论分析与工程实践研究[D]. 天津: 天津大学, 2003.
WANG Xiao-dun. The research of theoretical analysis and construction of the Pantadome [D]. Tianjin: Tianjin University, 2003.
[5]   王小盾, 陈坤, 刘占省, 等. 机构顶升全过程的结构整体可靠性分析[C] // 第10届全国现代结构工程学术研讨会论文集. 天津: 天津大学, 2010.
WANG Xiao-dun, CHEN Kun, LIU Zhan-sheng, et al. Reliability analysis of mechanism lifting process [C] // The 10th National Symposium on Modern Structural Engineering. Tianjin: Tianjin University, 2010.
[6]   罗尧治, 胡宁, 沈雁彬, 等 网壳结构"折叠展开式"计算机同步控制整体提升施工技术[J]. 建筑钢结构进展, 2005, 7 (04): 27- 32
LUO Yao-zhi, HU Ning, SHEN Yan-bin, et al Deployable integral lifting construction technology for cylindrical latticed shells[J]. Progress in Steel Building Structures, 2005, 7 (04): 27- 32
doi: 10.3969/j.issn.1671-9379.2005.04.006
[7]   罗尧治, 陈晓光, 沈雁彬, 等 网壳结构" 折叠展开式”提升过程中动力响应分析[J]. 浙江大学学报: 工学版, 2003, 37 (06): 639- 645
LUO Yao-zhi, CHEN Xiao-guang, SHEN Yan-bin, et al Dynamic response analysis of deployable lifting construction process of reticulated shell structures[J]. Journal of Zhejiang University: Engineering Science, 2003, 37 (06): 639- 645
[8]   张其林, 罗晓群, 杨晖柱 索杆体系的机构运动及其与弹性变形的混合问题[J]. 计算力学学报, 2004, 21 (4): 470- 474
ZHANG Qi-lin, LUO Xiao-qun, YANG Hui-zhu Mechanism motion and motion-deformation hybrid problems of cable-member systems[J]. Chinese Journal of Computational Mechanics, 2004, 21 (4): 470- 474
doi: 10.3969/j.issn.1007-4708.2004.04.015
[9]   蒋本卫, 邓华, 伍晓顺 平面连杆机构的提升形态及稳定性分析[J]. 土木工程学报, 2010, 43 (01): 13- 21
JIANG Ben-wei, DENG Hua, WU Xiao-shun Kinematic state and stability analysis for planar linkages during lifting erection[J]. China Civil Engineering Journal, 2010, 43 (01): 13- 21
[10]   蒋旭东, 邓华 铰接板机构运动分析的简便协调方程[J]. 工程力学, 2015, 32 (03): 126- 133
JIANG Xu-dong, DENG Hua Simple compatibility equations for kinematic analysis of pin-jointed plate mechanisms[J]. Engineering Mechanics, 2015, 32 (03): 126- 133
[11]   祖义祯, 邓华 基于弧长法的平面连杆机构运动分析[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2159- 2168
ZU Yi-zhen, DENG Hua Kinematic analysis of planar pin-bar linkages by arc-length method[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2159- 2168
[12]   蔡建国, 江超, 赵耀宗, 等 攀达穹顶体系的运动过程分析[J]. 工程力学, 2015, (12): 117- 123
CAI Jian-guo, JIANG Chao, ZHAO Yao-zong, et al Analysis of the movement process of Pantadome system[J]. Engineering Mechanics, 2015, (12): 117- 123
[13]   DENG H, KWAN A S K Unified classification of stability of pin-jointed bar assemblies[J]. International of Journal of Solids and Structures, 2005, 42 (15): 4393- 4413
doi: 10.1016/j.ijsolstr.2005.01.009
[14]   程云鹏. 矩阵论[M]. 西安: 西北工业大学出版社, 2001: 193-195.
[15]   PELLEGRINO S Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30 (21): 3025- 3035
doi: 10.1016/0020-7683(93)90210-X
[16]   WILSON E L, YUAN M W, JOHN M, et al Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake Engineering and Structural Dynamics, 1982, 10 (6): 813- 821
doi: 10.1002/(ISSN)1096-9845
[17]   宫玉才, 周洪伟, 陈璞, 等 快速子空间迭代法、迭代Ritz向量法与迭代Lanczos法的比较[J]. 振动工程学报, 2005, 18 (2): 227- 232
GONG Yu-cai, ZHOU Hong-wei, CHEN Pu, et al Comparison of subspace iteration, iterative Ritz vector method and iterative Lanczos method[J]. Journal of Vibration Engineering, 2005, 18 (2): 227- 232
doi: 10.3969/j.issn.1004-4523.2005.02.019
[18]   ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares fitting of two 3-D point sets [C] // IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
[1] Yue-dong JIN,Ru-hao WANG,Yang ZHAO. Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2100-2108.
[2] Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.
[3] DONG Shi-lin, MIAO Feng, CHEN Wei-gang, ZHOU Guan-gen, TENG Qi, DONG Sheng-hao. Configuration, static and stability analysis on new-type six-bar tetrahedral cylindrical lattice shells[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 508-513.
[4] XIE En xian, YUAN Xing fei, CHEN Chong. Analysis of dynamical failure of suspendome under typhoon load[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 238-244.
[5] HUANG Li, DENG Hua. Hoff theory based sandwich shell element for metal composite roof panel[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 41-47.
[6] MA Teng, ZHAO Xing zhong, GAO Bo qing, WU Hui. Combined shape and topology optimization of free form structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1946-1951.
[7] DING Hui, LUO Yao-zhi.
Isoparametric line dividing grid generation method for free-form lattice shells
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1795-1801.
[8] SU Liang, SUO Jing, SONG Ming-liang. Parameter sensitivity analysis of seismic vulnerability assessment for RC frames[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1384-1390.
[9] DENG Hua, HUANG Li, WANG Chen. Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2125-2131.
[10] WANG Qiong, DENG Hua. Analysis of elasto-plastic dynamic responses of suspendome under rare earthquake[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1889-1895.
[11] SU Liang, SUO Jing. Comparison of different equivalent linearization approaches applied to displacement-based seismic design methodology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1926-1931.
[12] ZHANG Cheng, LI Zhi-an, GAO Bo-qing, Dong Shi-lin. Robustness analysis of reticular shells based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 818-823.
[13] ZHANG Min-rui, DENG Hua, LIU Hong-chuang, DONG Shi-lin. Model experiment on the static behaviors of a crescent-shaped
cable-truss canopy structure
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 367-377.
[14] HE Jiang-fei, GAO Bo-qing. Vulnerability assessment and failure scenarios identification
of truss structures
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1633-1637.
[15] WU Hui,CEN Di-Qin,GAO Bo-qing. Approximate optimization and performance analysis of
rigid cable dome structure
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1966-1971.