Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1071-1082    DOI: 10.3785/j.issn.1008-973X.2019.06.006
Civil and St ructural Engineering     
Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge
Zu-wei HUANG(),Jun-qing LEI*(),Cheng-zhong GUI,Shu-lun GUO
College of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: HTML     PDF(2124KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Orthotropic steel (Q500qE) deck of cable-stayed bridge with plate-truss composite structure was taken as the research object. Fatigue test and numerical simulation were done to study full-scale girder segment models with broad U-rib fatigue features of key fatigue details in orthotropic steel deck. Method of pre-stressing force was adopted to simulate the initial axial pressure in deck. The three segment models were loaded by 6.5 million variable amplitude fatigue cycles. Results prove that the initial long macro crack occurs in the bottom of butt-welded splice joints of U-rib-web. The length of initial macro crack is proportional to the stress amplitude. The crack growth stage of broad U-shape-rib can be divided into four parts with clear demarcation point between each part. Crack growth rate is proportional to crack length. Crack growth rate is increased under the effect of axial force. Fatigue strength of welding details can be increased when the excess weld metal of welding seam is eradicated and abraded after welding with back-up member for embedded section of broad U-rib. It is recommended that the butt joint weld of the wide U-rib embedded section can be designed with the fatigue strength of category 110 in China's specification for structural design of highway steel bridge (JTG D64-2015).



Key wordsorthotropic steel deck      full-scale fatigue test      axial compressive force      U-rib embedded section      crack growth      fatigue strength     
Received: 31 May 2018      Published: 22 May 2019
CLC:  U 443.32  
Corresponding Authors: Jun-qing LEI     E-mail: zuwei_huang@bjtu.edu.cn;jqlei@bjtu.edu.cn
Cite this article:

Zu-wei HUANG,Jun-qing LEI,Cheng-zhong GUI,Shu-lun GUO. Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1071-1082.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1071


斜拉桥正交异性钢桥面板疲劳试验研究

以板桁斜拉桥的Q500qE正交异性钢桥面板作为研究对象,采用足尺节段模型疲劳试验和数值模拟的方法,对具有宽U肋的正交异性钢桥面板关键细节的疲劳性能进行研究. 通过施加预应力的方法模拟桥面板的轴压力. 3个试验模型总计进行650万次变幅疲劳循环加载. 研究结果表明,嵌补段焊缝初始裂纹以宏观长裂纹的方式出现在腹板下缘,荷载幅越大,初始裂纹越长;宽U肋嵌补段腹板和底板的裂纹扩展可以分为4个阶段,各阶段间有明显的分界点;裂纹扩展速度与裂纹扩展长度正相关;轴压力增大了嵌补段裂纹扩展速度;对设置了焊接垫板的宽U肋嵌补段的焊缝余高进行铲除并磨平处理可以提高焊缝细节的疲劳强度. 推荐采用我国公路钢桥结构设计规范(JTG D64-2015)中110类细节疲劳强度设计宽U肋嵌补段对接接头焊缝.


关键词: 正交异性钢桥面板,  足尺疲劳试验,  轴向压力,  U肋嵌补段,  裂纹扩展,  疲劳强度 
Fig.1 Test design diagram and in-site arrangement
Fig.2 Design schemes of full scale segment model of orthotropic steel bridge deck
项目 σy/MPa σcr/MPa δs/% σy/σcr
试验Ⅰ 546 665 20.0 0.82
试验Ⅱ 570 667 21.0 0.85
试验Ⅲ 546 655 19.5 0.83
试验Ⅳ 518 640 27.5 0.81
均值 545 657 22.0 0.83
变异系数 0.79 0.50 8.14 14.46
Tab.1 Tested value of material properties for Q500qE
Fig.3 Finite element model of cracking specimens
试件 N/104 Fmin/kN Fmax/kN f/Hz $\Delta$F/kN R
A 0~100 20 91 4.0 71 0.220
100~150 30 101 4.0 71 0.297
150~200 40 111 4.0 71 0.360
200~250 40 260 2.0 220 0.154
250~277 10 430 1.5 420 0.023
B 0~50 10 260 2.0 250 0.038
50~100 10 170 3.0 160 0.059
100~200 10 130 3.0 120 0.077
200~219.6 10 260 1.5 250 0.038
C 0~152.5 10 260 2.0 250 0.038
Tab.2 Tested material properties of Q500qE
Fig.4 Crack propagation in embedded section of specimen A
Fig.5 Crack propagation in embedded section of specimen B
Fig.6 Crack propagation in embedded section of specimen C
Fig.7 Arrangement of strain measure points on bottom of U-rib
Fig.8 Crack distribution and stress variation of specimens
MPa
试件 阶段 1 阶段 2 阶段 3 阶段 4
t4 t5 t6 t4 t5 t6 t4 t5 t6 t4 t5 t6
A 145 146 161 143 146 146 ? ? ? 0.6 95 399
B 167 156 152 163 156 178 166 193 133 511 19 ?23
C 150 150 156 151 155 194 154 215 116 383 0 ?4
Tab.3 Stress of test points in embedded section under loading of 250 kN
MPa
测点 试件A 试件B 试件C
开裂前 最终 开裂前 最终 开裂前 最终
Fps F0 Fps+F0 Fps F0 Fps+F0 Fps F0 Fps+F Fps F0 Fps+F F0 F0
t1 ?34 202 168 ?3 93 91 ?34 200 166 ?57 304 247 200 239
t2 ?34 190 156 ?33 182 149 ?34 188 154 ?31 160 129 188 114
t3 ?34 202 168 ?62 294 232 ?34 200 166 ?7 65 58 200 28
t4 ?34 139 104 0 1 1 ?34 151 118 ?121 377 256 151 244
t5 ?34 139 105 ?1 3 2 ?34 151 117 ?2 3 1 151 0
t6 ?34 139 104 ?162 372 210 ?34 151 118 1 0 1 151 0
Tab.4 Stress of test points in finite element model under loading of 250 kN
mm
试件 阶段1 阶段2 阶段3 阶段4
t6 t3 t7 t6 t3 t7 t6 t3 t7 t6 t3 t7
A 2.9 3.3 2.7 2.9 3.3 2.5 ? ? ? 3.5 4.0 3.7
B 1.8 2.6 2.0 1.9 2.6 2.0 1.9 2.7 2.01 3.5 4.0 3.6
C 2.1 2.6 1.9 2.1 2.7 1.9 2.3 2.8 2.1 5.15 5.29 4.3
Tab.5 Displacement of test points in Mid-span under loading of 250 kN
Fig.9 Load-displacement curve of specimens
Fig.10 Load-displacement curve of specimens
mm
项目 实测数据 坐标投影
裂纹位置 U肋腹板 U肋底板 U肋腹板 U肋底板
阶段 初始 扩展 初始 扩展 初始 扩展 初始 扩展
试件A 84.0 104.5 17.0 201.0 90.9 104.5 23.0 201.0
试件B 38.0 104.4 26.8 193.6 64.2 104.6 13.2 201.4
试件C 30.0 131.7 21.5 214.7 61.1 131.7 6.1 212.0
Tab.6 Records of crack length in web and bottom of U-rib
Fig.11 Crack propagation rule in embedded section of specimen A
Fig.12 Crack propagation rule in embedded section of specimen B and C
Fig.13 Relationship between crack growth rate and numbers of circular fatigue loading
Fig.14 Crack propagation rule of U-rib embedded section
MPa
测点位置 跨中 嵌补段
t1 t2 t3 t4 t5 t6
试件A ?30.2 ?34.9 ?31.5 ?29.8 ?32.6 ?33.0
试件B ?24.2 ?22.9 ?23.1 ?25.0 ?22.9 ?22.7
Tab.7 Initial axial stress in measure points on U-rib
位置 阶段 试件A 试件B 试件C
N/104 v′/(104 mm·次?1 N/104 v′/(104mm·次?1 N/104 v′/(104mm·次?1
底板 a 2.7 8.6 2.4 5.5 6.1 0.7
b 9.0 1.1 9.3 0.3 28.9 0.8
c 12.3 30.6 18.9 10.1 35.1 14.5
d 12.4 616.0 19.9 90.5 35.8 144.8
腹板 a 2.7 33.8 2.4 26.6 4.1 14.8
b' 6.4 2.2 12.8 2.2 30.0 2.6
c' 11.9 5.5 19.4 6.8 35.5 7.1
d' 12.4 115.4 19.9 71.3 35.8 79.0
Tab.8 Fatigue crack subcritical expansion rate
Fig.15 Relation between crack growth rate and crack length
Fig.17 Stress around crack tip of U-rib embedded section in specimen B under different loading conditions
Fig.16 Fatigue crack tip of U-rib embedded section in specimen B
试件 $\Delta {S_{\rm{a}}}$/MPa N/104 Fps0/kN
t4 t5 t6
A 131.3 134.1 146.3 200 560
B 119.6 112.2 112.1 200 640
C 138.5 129.7 126.3 200 0
Tab.9 Fatigue strength in embedded section of U-rib
Fig.18 Fatigue strength grade of butt-welded in embedded section of orthotropic steel bridge deck
[1]   张清华, 崔闯, 卜一之, 等 正交异性钢桥面板足尺节段疲劳模型试验研究[J]. 土木工程学报, 2015, (4): 72- 83
ZHANG Qing-hua, GUI Chuang, Bu Yi-zhi, et al Experimental study on fatigue features of orthotropic bridge deck through full-scale segment models[J]. China Civil Engineering Journal, 2015, (4): 72- 83
[2]   王春生, 付炳宁, 张芹, 等 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26 (2): 69- 76
WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26 (2): 69- 76
doi: 10.3969/j.issn.1001-7372.2013.02.011
[3]   SIM H B, UANG C M, SIKORSKY C Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2009, 14 (5): 366- 373
doi: 10.1061/(ASCE)1084-0702(2009)14:5(366)
[4]   WOLCHUK R Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116 (1): 75- 84
doi: 10.1061/(ASCE)0733-9445(1990)116:1(75)
[5]   WOLCHUK R Steel orthotropic decks: developments in the 1990s[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1688 (1688): 30- 37
[6]   TSAKOPOULOS P A, FISHER J W Full-Scale fatigue tests of steel orthotropic decks for the Williamsburg bridge[J]. Journal of Bridge Engineering, 2003, 8 (5): 323- 333
doi: 10.1061/(ASCE)1084-0702(2003)8:5(323)
[7]   苟超, 郑凯锋, 栗怀广, 等 大跨斜拉桥钢箱梁正交异性桥面详细应力计算和桥面优化研究[J]. 钢结构, 2016, 31 (12): 82- 87
GOU Chao, ZHENG Kai-feng, LI Guang-huai, et al Analysis of detailed stresses calculation and optimization for orthotropic steel deck of box girder of long-span cable-stayed bridge[J]. Steel Construction, 2016, 31 (12): 82- 87
[8]   何畏, 李乔 板桁组合结构体系受力特性及计算方法研究[J]. 中国铁道科学, 2001, 22 (5): 65- 72
HE Wei, LI Qiao Study on features of force bearing of plate and truss composite structure system and the calculation method[J]. China Railway Science, 2001, 22 (5): 65- 72
doi: 10.3321/j.issn:1001-4632.2001.05.011
[9]   秦竟熙, 张明金, 李永乐 大跨度公铁两用斜拉桥板桁主梁受力特性研究[J]. 桥梁建设, 2014, 44 (6): 46- 51
QIN Jing-xi, ZHANG Ming-jin, LI Yong-le Study of mechanical characteristics of plate and truss main girder of long span rail-cum-load cable-stayed bridge[J]. Bridge Construction, 2014, 44 (6): 46- 51
[10]   颜智法. 斜索桥板桁结合桥面系力学特性及剪力滞计算方法研究[D]. 成都: 西南交通大学. 2011.
YAN Zhi-fa. Study of mechanical property and calculation Method of shear lag effect in truss girder with integral orthotropic deck of suspension bridge [D]. Chengdu: Southwest Jiaotong University. 2011.
[11]   徐向军, 贝玉成, 常国光 新型高性能桥梁用Q500q钢板焊接试验研究(二)[J]. 金属加工: 热加工, 2015, (16): 64- 67
XU Xiang-jun, BEI Yu-cheng, CHANG Guo-guang Test study of welding for new high performance bridge Q500q steel plate[J]. Steel Structure, 2015, (16): 64- 67
[12]   田越. 500 MPa级高性能钢(Q500qE)在铁路钢桥中的应用研究[D]. 北京: 中国铁道科学研究院, 2010.
TIAN Yue. Research on 500 MPa class high performance steel (Q500qE) using in railway steel bridges [D]. Beijing: China Academy of Railway Sciences Corporation Limited, 2010.
[13]   祝志文, 向泽 大尺寸纵肋顶板-U肋构造细节的受力分析[J]. 钢结构, 2016, 31 (11): 38- 41
ZHU Zhi-wen, XIANG Ze Stress analysis for structural detail on large-sized U-rib to deck plate welding connection[J]. Steel Construction, 2016, 31 (11): 38- 41
[14]   郭伟峰. 新型大纵肋正交异性钢板−混凝土组合桥面板优化设计及适用性研究[D]. 成都: 西南交通大学, 2016.
GUO Wei-feng. Research on optimization design and applicability of new large longitudinal rib orthotropic steel-concrete composite bridge deck [D]. Chengdu: Southwest Jiaotong University, 2016.
[15]   WOLCHUK R Prefabricating standard orthotropic steel decks[J]. Morden Steel Construction, 2006, (12): 49- 51
[16]   赵欣欣. 正交异性钢桥面板疲劳设计参数和构造细节研究[D]. 北京: 中国铁道科学研究院, 2010.
ZHAO Xin-xin. Research on fatigue design parameter and structural details for orthotropic deck [D]. Beijing: China Academy of Railway Sciences Corporation Limited, 2010.
[17]   潘永杰, 张玉玲, 田越 Q500qE高性能钢工型梁极限承载力研究[J]. 中国铁道科学, 2011, 32 (3): 16- 20
PAN Yong-jie, ZHANG Yu-ling, TIAN Yue Study on the ultimate bearing capacity of I-Shaped beam made by high performance steel Q500qE[J]. China Railway Science, 2011, 32 (3): 16- 20
[18]   鞠晓臣, 田越, 赵欣欣 Q500qE高强钢压杆稳定研究[J]. 铁道建筑, 2015, (10): 80- 84
JU Xiao-chen, TIAN Yue, ZHAO Xin-xin Research of compression stability of Q500qE high strength steel rod[J]. Railway Engineering, 2015, (10): 80- 84
doi: 10.3969/j.issn.1003-1995.2015.10.17
[19]   曹珊珊,雷俊卿,黄祖慰 大跨多线公铁两用斜拉桥索锚结构疲劳荷载效应[J]. 中南大学学报: 自然科学版, 2017, (12): 3301- 3308
CAO Shan-shan, LEI Jun-qing, HUANG Zu-wei Analysis of fatigue load amplitude of cable-girder anchorage structure in long-span highway-railway cable-stayed bridge[J]. Journal of Central South University: Science and Technology, 2017, (12): 3301- 3308
[20]   张彦华. 焊接结构疲劳分析[M]. 北京: 化学工业出版社, 2013: 43–44.
[21]   唐亮, 黄李骥, 刘高, 等 正交异性钢桥面板足尺模型疲劳试验[J]. 土木工程学报, 2014, (3): 112- 122
TANG Liang, HUANG Li-ji, LIU Gao, et al Fatigue experimental study of a full-scale steel orthotropic deck model[J]. China Civil Engineering Journal, 2014, (3): 112- 122
[1] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[2] Wen ZHONG,You-liang DING,Yong-sheng SONG,Bao-ya CAO,Fang-fang GENG. Relaxation effect of welding residual stress in deck-to-rib joints[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 83-90.
[3] CHEN Ren-peng, WANG Zuo-zhou, JIANG Hong-guang, BIAN Xue-cheng. Control standard of differential settlement in high-speed railway slab based on bending fatigue strength [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 796-802.
[4] LI Yi-min, HAO Zhi-yong, ZENG Xiao-chun. Finite element analysis for connecting rod considering oil film lubrication[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1233-1237.