Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (10): 1926-1934    DOI: 10.3785/j.issn.1008-973X.2018.10.012
Civil Engineering     
Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model
LEI Yan-yun, XIE Xu
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download:   PDF(1988KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Giuffre-Menegotto-Pinto constitutive model of reinforcement (MP model) will develop an unrealistic sudden change of the strain and stiffness, and overestimate the stress under a circumstance of reloading subsequent to a small-amplitude unloading history. The definition of the elastic range radius and the reassignment of reversal points were proposed to overcome the defect of MP model. The criterion of small strain vibration was determined and divided into two different cases based on the radius of elastic range. A nonlinear analysis program of the reinforced concrete structure was developed based on the fiber beam element, in which the modified MP model and the Mander concrete model were included. The accuracy and applicability of the improved method were verified by both the analysis of steel bar's hysteresis characteristic under small strain vibration and the simulation of the load-displacement curve for a pier through pseudo-static test. Results show that the stress-strain curve predicted by the modified MP model is more rational, and the overestimation of the horizontal bearing capacity and the stiffness of structures can be successfully avoided. The accuracy of hysteretic curve of reinforcement was significantly improved by the modified model in the reinforced concrete structural elasto-plastic analysis.



Received: 24 August 2017      Published: 11 October 2018
CLC:  U443  
Cite this article:

LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1926-1934.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.10.012     OR     http://www.zjujournals.com/eng/Y2018/V52/I10/1926


修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型

针对Giuffre-Menegotto-Pinto钢筋滞回本构模型(MP模型)发生小幅卸载再加载履历(小幅循环)时存在应变和刚度突变、高估材料强度缺陷的问题,通过定义钢筋材料的弹性域半径引入新的小幅循环判别方法,将小幅循环分为2种类型,提出对小幅反转点重新赋值的修正方法,消除不合理的履历;应用修正后的MP模型和Mander混凝土模型,开发基于空间纤维梁单元理论的RC结构弹塑性分析程序;分析含小幅循环的钢筋滞回曲线、模拟RC柱的拟静力试验结果,检验修正方法的有效性.结果表明:修正的MP模型发生小幅循环时履历合理,避免了原模型刚度和应力偏大的问题;修正模型改进了RC结构中钢筋在地震作用下的滞回履历,在弹塑性分析中有较好的计算效率.

[1] MENEGOTTO M. Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures. Lisbon:[s. n.], 1973:15-22.
[2] MONTI G, NUTI C. Nonlinear cyclic behavior of reinforcing bars including buckling[J]. Journal of Structural Engineering, 1992, 118(12):3268-3284.
[3] CHANG G A, MANDER J B. Seismic energy based fatigue damage analysis of bridge columns:part I-evaluation of seismic capacity. technical report[R]. Buffalo:National Center for Earthquake Engineering Research, 1994, nceer-94-0006.
[4] KUNNATH S K, HEO Y A, MOHLE J F. Nonlinear uniaxial material model for reinforcing steel bars[J]. Journal of Structural Engineering, 2009, 135(4):335-343.
[5] RESTREPOPOSADA J I, DODD L L. Model for predicting cyclic behavior of reinforcing steel[J]. Journal of Structural Engineering, 1995, 121(3):433-445.
[6] DHAKAL R P, MAEKAWA K. Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling[J]. Engineering Structures, 2002, 24(11):1383-1396.
[7] HOEHLER M S, STANTON J F. Simple phenomenological model for reinforcing steel under arbitrary load[J]. Journal of Structural Engineering, 2006, 132(7):1061-1069.
[8] CIAMPI V, ELIGEHAUSEN R, BERTERO V, et al. Analytical model for concrete anchorages of reinforcing bars under generalized excitations, Report No. UCB/EERC-82/23[R]. Berkeley:Earthquake Engineering Research Center, University of California at Berkeley, 1982.
[9] FILIPPOU E, POPOV E, BERTERO V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints, Report No. UCB/EERC-83/19[R]. Berkeley:Earthquake Engineering Research Center, University of California at Berkeley, 1983.
[10] SAKAI J, KAWASHIMA K. Modification of the giuffre, menegotto and pinto model for unloading and reloading paths with small strain variations[J]. Doboku Gakkai Ronbunshu, 2003, 738(738):159-169.
[11] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中华人民共和国住房与城乡建设部, 2010.
[12] KOLOZVARI K, TRAN T A, ORAKCAL K, et al. Modeling of cyclic shear-flexure interaction in reinforced concrete structural walls. I:theory[J]. Journal of Structural Engineering, 2015, 141(5):04014136.
[13] 王彤, 谢旭, 唐站站, 等. 考虑复杂应变历史的钢材修正双曲面滞回模型[J]. 浙江大学学报:工学版, 2015, 49(7):1305-1312 WANG Tong, XIE Xu, TANG Zhan-zhan, et al. Modified two-surface steel hysteretic model considering complex strain history[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(7):1305-1312
[14] 陆新征, 叶列平, 潘鹏, 等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛I:框架试验[J]. 建筑结构, 2012, 42(11):19-22 LU Xin-zheng, YE Lie-ping, PAN Peng, et al. Pseudo-static collapse experiments and numerical prediction competition of RC frame structure I:RC frame experiment[J]. Building Structure, 2012, 42(11):19-22
[15] 陆新征, 叶列平, 潘鹏, 等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J]. 建筑结构, 2012, 42(11):23-26 LU Xin-zheng, YE Lie-ping, PAN Peng, et al. Pseudo-static collapse experiments and numerical prediction competition of RC frame structure Ⅱ:key elements experiment[J]. Building Structure, 2012, 42(11):23-26
[16] 中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会. 钢筋混凝土框架柱拟静力试验竞赛结果[EB/OL]. 2011-08-01[2017-08-01]. http://www.collapse-prevention.net/show.asp?ID=11&adID=2.
[17] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[18] WAN T T. Uniaxial compressional stress-strain relation of concrete[J]. Journal of Structural Engineering, 1988, 114(9):2133-2136.
[19] 卜海峰, 胡思康, 张耀庭, 等. 基于OpenSees的RC柱拟静力数值分析模型[J]. 土木工程与管理学报, 2016, 33(5):21-27 BU Hai-feng, HU Si-kang, ZAHNG Yao-ting, et al. Numerical analysis model for pseudo-static RC columns based on OpenSees[J]. Journal of Civil Engineering and Management, 2016, 33(5):21-27

[1] KUAI Yan-rong, QI Mei-lan, LI Jin-zhao. Analysis of wave forces on bridge substructure in near-shore[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2356-2364.
[2] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1954-1963.
[3] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 896-905.
[4] ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 317-324.
[5] GUO Kang-shi, ZHUANG Yan-feng, DUAN Wei. Experimental study on micro-mechanism of electro-osmosis using montmorillonite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2373-2382.
[6] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2158-2164.
[7] ZOU Wei-lie, HE Yang, ZHANG Feng-De, WANG Dong-xing, WANG Shuai, WANG Yuan-ming. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2182-2188.
[8] WAN Chen-guang, SHEN Ai-qin, GUO Yin-chuan. Shear behavior of leveling layer and asphalt pavement of bridge deck pavement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1355-1360.