YANG Bing1, WANG Xiao-hua1,2, YANG Xin3, HUANG Xiao-xi1
1. Institute of Cognitive and Intelligent Computing, Hangzhou Dianzi University, Hangzhou 310018, China; 2. China Jiliang University, Hangzhou 310018, China; 3. Computer Science and Technology College, Dalian University of Technology, Dalian 116023, China
In order to extract the local and global facial features for effective face recognition in complex environment, a face recognition method based on histograms of oriented gradients (HOG) pyramid model was. This method constructs the HOG pyramid of face image by multiscale analysis and HOG feature maps extraction. The feature maps in each layer of HOG pyramid are respectively separated into several non-overlapping blocks from which the HOG histograms are built and concatenated into an improved feature vector that can be used as the face descriptor later. Face recognition is performed throughout the similarity calculation among above feature vectors by using nearest neighbor classifier.Face recognition experimental results on the face recognition technology (FERET) database that captured under complicate changes of light and time environments demonstrate that the proposed method is of highly discriminable ability and good robustness in face recognition.
YANG Bing, WANG Xiao-hua, YANG Xin, HUANG Xiao-xi. Face recognition method based on HOG pyramid. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1564-1569.
[1] TAN X, CHEN S, ZHOU Z, et al. Face recognition from a single image per person: a survey [J]. Pattern Recognition, 2006, 39(9): 1725-1745.
[2] AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
[3] CHEN D, CAO X, WEN F, et al. Higher is better: high-dimensional feature and its efficient compression for face verification [C]∥ IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13). Portland: IEEE Computer Society, 2013:18.
[4] LIU C, WECHSLER H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. IEEE Transactions on Image Processing, 2002, 11(4): 467-476.
[5] YANG P, SHAN S, GAO W. Face recognition using ada-boosted gabor features [C]∥ Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG’04). Seoul: IEEE Computer Society, 2004:356-361.
[6] ZHANG W, SHAN S, GAO W, et al. Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition [C]∥Proceedings of the International Conference on Computer Vision (ICCV’05) .Beijing: IEEE Computer Society, 2005: 786-791.
[7] 王 玮, 黄非非, 李见为, 等. LBP金字塔的人脸描述与识别 [J]. 计算机辅助设计与图形学学报, 2009, 21(1): 94-100.
WANG Wei, HUANG Fei-fei, LI Jian-wei,et al. Face description and recognition by LBP pyramid [J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(1): 94100.
[8] LI P, MOHAMMED U, ELDER J, et al. Probabilistic models for inference about identity [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 144-157.
[9] DALAL H. Histograms of oriented gradients for human detection [C]∥IEEE International Conference on Computer Vision and Pattern Recognition (CVPR’05).San Diego: IEEE Computer Society, 2005: 886893.
[10] ALBIOL A, MONZO D, MARTIN A, et al. Face recognition using HOG–EBGM [J]. Pattern Recognition Letters, 2008, 29(10): 15371543.
[11] DENIZ O, BUENO G, TORRE L. Face recognition using histograms of oriented gradients [J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.
[12] 向征, 谭恒良, 马争鸣. 改进的HOG和Gabor, LBP性能比较 [J]. 计算机辅助设计与图形学学报, 2012, 24(6): 787-792.
XIANG Zheng, TAN Heng-liang, MA Zheng-ming. Performance comparison of improved HOG, Gabor and LBP [J]. Journal of Computer Aided Design & Computer Graphics, 2012, 24(6): 787-792.
[13] 向征, 谭恒良, 马争鸣. HOG在人脸识别中的性能研究[J]. 计算机工程, 2012, 38(15): 194196, 200.
XIANG Zheng, TAN Heng-liang, MA Zheng-ming. Performance research of HOG in face recognition[J]. Computer Engineering, 2012, 38(15): 194-196,200.
[14] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[15] RUBNE Y, PUZICHA J, TOMASI C, et al. Empirical evaluation of dissimilarity measures for color and texture [J]. Computer Vision and Image Understanding, 2001, 84(1): 25-43.
[16] SU Y, SHAN S, CHEN X, et al. Hierarchical ensemble of global and local classifiers for face recognition [J]. IEEE Transactions on Image Processing, 2009, 18(8): 18851896.
[17] DUDA R, HART P, STORK D. Pattern classification [M]. Second Edition.Hoboken,USA:Wiley, 2001.
[18] MOGHADDAM B, JEBARA T, PENTLAND A. Bayesian face recognition [J]. Pattern Recognition, 2000, 33(11): 1771-1782.
[19] 山世光. 人脸识别中若干关键问题的研究 [D].北京: 中国科学院计算技术研究所, 2004.
SHAN Shi-guang. Study on some key issuses in face recognition [D]. Beijing: Institute of Computing Technology, Chinese Academy of Sciences, 2004.