Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Computer Technology     
Image segmentation using novel adaptive robust bilateral filter
ZHANG Jian ting,ZHANG Li min
Naval Aeronautical and Astronautical University, Yantai 264001, China
Download:   PDF(2828KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 At first, an efficient and robust bilateral filtering (BF) model was derived from the view of robust regression. Then, a self-adaptive local smoothing scale algorithm was introduced to effectively remove the intensity variations of local image caused by textures and noise. With the new BF model, intensity and texture gradients could be extracted separately from input images and texture features. At last, gradients were fused with morphological method; watershed transform was used to implement image segmentation. Experiments were carried out with Berkeley segmentation database and some remote sensing images. As indicated, the proposed novel adaptive robust bilateral filter method can obtain visual consistent segmentation results. Meanwhile, compared with traditional algorithms, the method can acquire more accurate boundaries and reduce over-segmentation effect, which means that this method can be an effective tool in the preprocessing stage of image analysis.



Published: 22 September 2016
CLC:  TP 751  
Cite this article:

ZHANG Jian ting,ZHANG Li min. Image segmentation using novel adaptive robust bilateral filter. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1703-1710.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.09.09     OR     http://www.zjujournals.com/eng/Y2016/V50/I9/1703


新型自适应稳健双边滤波图像分割

从稳健回归分析的角度,推导得到高效的稳健双边滤波(BF)模型.针对由纹理、噪声等导致的图像局部梯度变化差异性,提出一种自适应的局部平滑尺度方法.运用该双边滤波模型处理原图像和纹理特征图,提取出灰度梯度和纹理梯度.采用形态学方法进行梯度融合,并使用分水岭变换实现图像分割.在Berkeley图像数据集和遥感图像上的实验结果表明:所提出的新型自适应稳健双边滤波方法可以得到视觉一致的分割效果;与传统方法相比,提高了对象边界识别率并降低了过分割效应;可以作为图像分析预处理过程的有效工具.

[1] BEGHDADI A, LARABI M C, BOUZERDOUM A, et al. A survey of perceptual image processing methods [J]. Signal Processing: Image Communication, 2013, 28(8): 811-831.
[2] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to stateoftheart superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[3] WANG P, ZENG G, GAN R, et al. Structuresensitive superpixels via geodesic distance [J]. International Journal of Computer Vision, 2013, 103(1): 1-21.
[4] FELZENSZWALB P, HUTTENLOCHER D. Efficient graphbased image segmentation [J]. International Journal of Computer Vision, 2004, 59(2): 167-181.
[5] WITHARANA C, CIVCO D L, MEYER T H. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 1-18.
[6] TABIB MAHMOUDI F, SAMADZADEGAN F, REINARTZ P. Object oriented image analysis based on multiagent recognition system [J]. Computers and Geosciences, 2013, 54: 219-230.
[7] CHAJI N, GHASSEMIAN H. Texturegradientbased contour detection [J]. EURASIP Journal on Applied Signal Processing, 2006(1): 18.
[8] OCALLAGHAN R J, BULL D R. Combined morphologicalspectral unsupervised image segmentation [J]. IEEE Transactions on Image Processing, 2005, 14(1): 49-62.
[9] CORCORAN P, WINSTANLEY A, MOONEY P. Complementary texture and intensity gradient estimation and fusion for watershed segmentation [J]. Machine Vision and Applications, 2011, 22(6): 1027-1045.
[10] TSIOTSIOS C, PETROU M. On the choice of the parameters for anisotropic diffusion in image processing [J]. Pattern Recognition, 2013, 46(5): 1369-1381.
[11] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [C]∥ Sixth International Conference on Computer Vision, 1998. New Delhi: IEEE, 1998: 839-846.
[12] 陈潇红, 王维东. 基于时空联合滤波的高清视频降噪算法 [J]. 浙江大学学报:工学版, 2013, 47(5): 853-859.
CHEN Xiaohong, WANG Weidong. A HDTV video denoising algorithm based on spatialtemporal filtering [J]. Journal of Zhejiang University:Engineering Science, 2013, 47(5): 853-859.
[13] BLACK M J, SAPIRO G, MARIMONT D H, et al. Robust anisotropic diffusion [J]. IEEE Transactions on Image Processing, 1998, 7(3): 421-432.
[14] DONG G, ACTON S T. On the convergence of bilateral filter for edgepreserving image smoothing [J]. IEEE Signal Processing Letters, 2007, 14(9): 617-620.
[15] 刘晓光,高兴宝. 一种基于GNC和增广拉格朗日对偶的非凸非光滑图像恢复方法[J]. 电子学报,2014,42(2): 264271.
LIU Xiaoguang, GAO Xingbao. A method based on the GNC and augmented lagrangian duality for nonconvex nonsmooth image restoration [J]. Acta Electronica Sinica, 2014, 42(2): 264271.
[16] NIKOLOVA M. Markovian reconstruction using a GNC approach [J]. IEEE Transactions on Image Processing, 1999, 8(9): 1204-1220.
[17] NAVA R, ESCALANTERAMREZ B, CRISTBAL G. A comparison study of Gabor and logGabor wavelets for texture segmentation [C]∥ 2011 7th International Symposium on Proceedings of the Image and Signal Processing and Analysis (ISPA). Dubrovnik: IEEE, 2011: 189194.
[18] CLAUSI D A, JERNIGAN M. Designing Gabor filters for optimal texture separability [J]. Pattern Recogniti-on, 2000, 33(11): 1835-1849.
[19] SOILLE P. Morphological image analysis: principles and applications [M]. New York: SpringerVerlag, 2003: 206-216.
[20] YANG Y, WANG Y, QIAN J. Building identification from SAR image based on the modified markercontrolled watershed algorithm [C]∥Geoscience and Remote Sensing Symposium. Milan:IEEE, 2015: 2481-2484.

[1] JIANG Bo, XIE Lun, LIU Xin, HAN Jing, WANG Zhi-liang. Micro-expression spotting using optical flow magnitude estimation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 577-583.
[2] WEN Nu,YANG Shi-zhi,CUI Sheng-cheng. High resolution remote sensing image denoising based on Curvelet-Wavelet transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 79-86.
[3] LIU Jun-wei, HAN Bang-he. Recovery method of vertical and horizontal cutting fragmented files[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1010-1015.
[4] CUI Jian-tao, WANG Jing,LI Xiao-run, ZHAO Liao-ying. Endmember extraction algorithm based on spatial pixel purity index[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1517-1523.
[5] LI Xiao-run, ZHU Jie-er, WANG Jing, ZHAO Liao-ying. Hyperspectral image classification based on compsite kernels support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1403-1410.
[6] MA Li-gang, ZHANG Le-ping, DENG Jing-song, WANG Ya-jie, WANG Ke. Land use classification using ZY1-“02C” remote sensing images[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1508-1516.
[7] LAI Xiao-bo, ZHU Shi-qiang, FANG Chun-jie. A three-dimensional reconstruction algorithm for complex
background image and its medical applications
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(11): 2061-2067.
[8] CUI Jian-tao, LI Xiao-run, ZHAO Liao-ying. Endmember extraction method for subpixel materials
in hyperspectral imagery
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1857-1865.
[9] CHE Hong-kun, LV Fu-zai, XIANG Zhan-qin. Time-frequency optimal feature extraction method
based on SFFS algorithm for defects recognition
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(12): 2235-2239.
[10] CHEN JinWei, FENG HuaJun, XU ZhiHai. MTF degeneration research of color CCD interpolation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 2063-2067.
[11] LI Xiao-run, WU Xiao-ming, ZHAO Liao-ying. Unsupervised nonlinear decomposing method of
hyperspectral imagery
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(4): 607-613.
[12] HAN Ning, ZHANG Xiu-Yang, WANG Xiao-Meng, CHEN Li-Su, WANG Ke. Identification of distributional information Torreya Grandis Merrlllii
using high resolution imagery
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 420-425.
[13] ZHANG De-Rong, SHU Le, ZHANG Han-Kui, et al. Fast mosaic method for optical remote sensing images[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(11): 1988-1993.