Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1508-1516    DOI: 10.3785/j.issn.1008-973X.2013.08.027
    
Land use classification using ZY1-“02C” remote sensing images
MA Li-gang1, ZHANG Le-ping1, DENG Jing-song1, WANG Ya-jie2, WANG Ke1
1. Institute of Applied Remote Sensing & Information Technology, Zhejiang University, Hangzhou 310029, China; 2. The 2nd Surveying and Mapping Institute of Zhejiang, Hangzhou 310012, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Land use of Hang Zhou city was classified from ZY-1 02C imagery in an neutral network approach using spectral, texture, and nDSM (Normalized Digital Surface Model) features. Texture features are selected from the combined use of semi-variance function and Z test. Construction and bare land were separated according to texture complexity distinction. Shadow and water were identified with the support of nDSM . Accuracy assessment indicate that addition of image textures can improve overall classification accuracy by 4% in comparison with classification using original bands solely. Furthermore, inclusion of elevation data can increase overall accuracy by 10% to 82.78%, which demonstrates the effectiveness of proposed method in the classification of 02C data. Classification result is acceptable.



Published: 01 August 2013
CLC:  TP 751.1  
Cite this article:

MA Li-gang, ZHANG Le-ping, DENG Jing-song, WANG Ya-jie, WANG Ke. Land use classification using ZY1-“02C” remote sensing images. J4, 2013, 47(8): 1508-1516.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.08.027     OR     http://www.zjujournals.com/eng/Y2013/V47/I8/1508


资源一号“02C”遥感影像土地利用分类

以杭州市主城区为试验区,针对建设用地与裸地空间纹理的复杂度和水体与阴影高程差异,拟采用半方差函数与Z检验结合选出的图像纹理结合高程信息等分量实现神经网络分类.结果表明,与单纯使用光谱信息相比,图像纹理的引入使总体分类精度提高约4%,加入高程信息则可以使总体分类精度提高约10%,达到82.75%,表明该方法可以应用于新数据的分类并得到相对满意的结果.

[1] 国土资源部.资源一号”02C”在轨交付仪式举行[EB/OL].[2012-04-18].http:∥www.mlr.gov.cn/xwdt/tpxw/201204/t20120418_1085506.htm.

[2] DENG Sheng-lu, QI Hao-wen. A survey of image classification methods and techniques for improving classification performance [J]. International Journal of Remote Sensing, 2007, 28(5): 823-870.

[3] DENG Sheng-lu, QI Hao-wen.. Extraction of urban impervious surfaces from an IKONOS image [J]. International Journal of Remote Sensing, 2009, 30(5): 1297-1311.

[4] VAN DE VOORDE T, JACQUET W, CANTERS F. Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious surface data [J]. Landscape and Urban Planning, 2011, 102(3): 143-155.

[5] ZHU Zhe, WOODCOCK C E, ROGAN J, et al. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data [J]. Remote Sensing of Environment, 2012, 117: 72-82.

[6] WU Bo, WANG Xiao-qin, SHEN Huan-feng, et al. Feature selection based on max-min-associated indices for classification of remotely sensed imagery [J]. International Journal of Remote Sensing, 2012, 33(17): 5492-5512.

[7] IHADL. ZY-1 “02C” Satellite parameters[EB/OL].[2012-03-26]http:∥blog.csdn.net/ihadl/article/details/7395366

[8] NIKOLAKOPOULOS K G. Comparison of four different fusion techniques for IKONOS data.[C]∥ IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2004, 2534-2537.

[9] ZHA Y, GAO J, NI S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery [J]. International Journal of Remote Sensing, 2003, 24(3): 583-594.

[10] 韩凝.空间信息在面向对象分类方法中的应用[D]. 浙江大学, 2011.

HAN Ning. Application of spatial information in object-based classification: A case study on delineating Torreya using IKONOS imagery[D]Hangzhou: Zhejiang University, 2011: 5253

[11] DENG Sheng-lu, QI Hao-wen. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana [J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(11): 1275-1284.

[12] SHANMUGAN K S, NARAYANAN V, FROST V S, et al. Textural features for Dadar image-analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(3): 153-156.

[13] PACIFICI F, CHINI M, EMERY W J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification [J]. Remote Sensing of Environment, 2009, 113(6): 1276-1292.

[14] THAPA R B, MURAYAMA Y. Urban mapping, accuracy, & image classification: A comparison of multiple approaches in Tsukuba City, Japan [J]. Applied Geography, 2009, 29(1): 135-144.

[15] 吴宏安,蒋建军,张海龙,等. 比值居民地指数在城镇信息提取中的应用 [J]. 南京师大学报:自然科学版. 2006(3): 118-121.

WU Hong-an, JIANG Jian-jun, ZHANG Hai-long et al. Application of ratio residential-area index to retrieve urban residential areas based on Landsat TM data [J]Journal of Nan Jing Normal University: Natural Science, 2006,(3.): 118-121.

[1] LI Xiao-run, ZHU Jie-er, WANG Jing, ZHAO Liao-ying. Hyperspectral image classification based on compsite kernels support vector machine[J]. J4, 2013, 47(8): 1403-1410.
[2] LAI Xiao-bo, ZHU Shi-qiang, FANG Chun-jie. A three-dimensional reconstruction algorithm for complex
background image and its medical applications
[J]. J4, 2012, 46(11): 2061-2067.
[3] CHE Hong-kun, LV Fu-zai, XIANG Zhan-qin. Time-frequency optimal feature extraction method
based on SFFS algorithm for defects recognition
[J]. J4, 2011, 45(12): 2235-2239.
[4] HAN Ning, ZHANG Xiu-Yang, WANG Xiao-Meng, CHEN Li-Su, WANG Ke. Identification of distributional information Torreya Grandis Merrlllii
using high resolution imagery
[J]. J4, 2010, 44(3): 420-425.