Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Visualization measurements of submicron particle movement inside an electrostatic precipitator 
SHEN Xin-jun1,3, WANG Shi-long2, Han Ping2, ZHENG Qin-zhen1, ZENG Yu-xuan1, YAN Ke-ping1
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University,  Hangzhou 310027, China; 2. Shenhua Guoneng Energy Group Co. Ltd., Beijing 100140, China; 3. School of Science, Shenyang University of Technology, Shenyang 110870,China
Download:   PDF(4530KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the influence of gas flow field on fine particles precipitation of electrostatic pricipitator (ESP), submicron particle movement inside an ESP was measured by using two-dimensional Particle Image Velocimetry (2D-PIV) technique. Moxa-moxibustion smoke was used as the tracer for the experiments. The wire-plate type ESP had gap distance of 200 mm. Experiments were performed with changing the high-voltage wires or corona discharge polarities. For a single high-voltage wire ESP and at the applied voltage of 50 kV, four generated vortexes around the wire are usually observed. For the ESP with double corona wires, more vortexes are produced due to their interaction. The four vortexes become much more symmetrical in between the two corona wires. Positive or negative corona discharges give similar vortexes in terms of their shapes. They are also similar each other when using wire or spike type electrodes. The particle velocity, however, can be significantly increased when using the double spike electrode due to its larger discharge power. The observed maximum velocity is about 1.6 m/s, which is almost three times of the primary gaseous velocity.     



Published: 26 December 2015
CLC:  TQ 9  
Cite this article:

SHEN Xin-jun, WANG Shi-long, Han Ping, ZHENG Qin-zhen, ZENG Yu-xuan, YAN Ke-ping. Visualization measurements of submicron particle movement inside an electrostatic precipitator . JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 985-992.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.025     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/985


电除尘器内亚微米细颗粒物动态的可视化测试

为了研究电除尘器内气流场对细颗粒物捕集的影响,采用二维粒子成像测速法(2D-PIV)对电除尘器内亚微米细颗粒物的运动规律进行测试.实验中,采用艾灸烟作为示踪粒子,线-板式电除尘器板间距为200 mm,通过改变高压放电极或电晕放电极性进行实验.结果表明,对单线电极电除尘器施加50 kV高压时,线电极周围会形成4个涡旋.对双线电极电除尘器来说,由于涡旋的相互作用,会形成更多的涡旋,且分布在双电晕线之间的4个涡旋更加均匀对称.从涡旋形貌来看,正电晕或负电晕放电具有相似的涡旋分布,采用线电极或芒刺电极时,也具有相似的涡旋分布.采用双芒刺电极时,由于注入更高的放电能量,颗粒物速度大幅提高,最高值可达1.6 m/s,是一次流速的3倍.

[1] MIZUNO A. Electrostatic precipitation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5):615-624.
[2] OHYAMA R, URASHIMA K, CHANG J S. Numerical modeling of wire-plate electrostatic precipitator for control of submicron and ultra fine particles [J]. Journal of Aerosol Science, 2000, 31(supplement):162-163.
[3] ZHU J B, ZHAO Q X, YAO Y P, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator [J]. Journal of Electrostatics, 2012, 70(5):285-291.
[4] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator [J]. Journal of Electrostatics, 2009, 67(2/3):99-104.
[5] 曾宇翾,沈欣军,章旭明,等.电除尘器中离子风的实验研究 [J]. 浙江大学学报:工学版, 2013, 47(12) :2208-2211.
ZENG Y X, SHEN X J, ZHANG X M, et al. Experimental study on ionic wind in an electrostatic precipitator [J]. Journal of Zhejiang University :Engineering Science, 2013, 47(12):22082211.
[6]PODLINSKI J, DEKOWSKI J, MIZERACZYK J, et al. Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency [J]. Journal of Electrostatics, 2006, 64(3/4):259-262.
[7]PODLINSKI J, NIEWULIS A, MIZERACZYK J, et al. ESP performance for various dust densities [J]. Journal of Electrostatics, 2008, 66(5/6):246-253.
[8]MIZERACZYK J, DEKOWSKI J, PODLINSKI J, et al. Laser flow visualization and velocity fields by particle image velocimetry in an electrostatic precipitator model [J]. Journal of Visualization, 2003, 6(2):125-133.
[9] PODLINSKI J, DEKOWSKI J, KOCIK M, et al. Measurement of the flow velocity field in multi-field wire-plate electrostatic precipitator [J]. Czechoslovak Journal of Physics, 2004, 54(supplement):922-930.
[10] PODLINSKI J, DEKOWSKI J, MIZERACZYK J, et al. EHD flow in a wide electrode spacing spike-plate electrostatic precipitator under positive polarity [J]. Journal of Electrostatics, 2006, 64(7/9):498-505.
[11] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator [J]. Journal of Electrostatics, 2009, 67(2/3):99-104.
[12] NIEWULIS A, BERENDT A, PODLINSKI J, et al. Electrohydrodynamic flow patterns and collection efficiency in narrow wire-cylinder type electrostatic precipitator [J]. Journal of Electrostatics, 2013, 71(4):808-814.
[13] PODLINSKI J, KOCIK M, BARBUCHA R, et al. 3D PIV measurements of the EHD flow patterns in a narrow electrostatic precipitator with wire-plate or wire-flocking electrodes [J]. Czechoslovak Journal of Physics, 2006, 56 (supplement):1009-1016.
[14] NIEWULIS A, PODLINSKI J, KOCIK M, et al. EHD flow Measured by 3D PIV in a narrow electrostatic precipitator with longitudinal-to-flow wire electrode and smooth or flocking grounded plane electrode [J]. Journal of Electrostatics, 2007, 65(12):728-734.
[15] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic turbulent flow in a wide wire-plate electrostatic precipitator measured by 3D PIV method [C] ∥11th International Conference on Electrostatic Precipitation. Hangzhou:[s.n.], 2008:134-139.
[16] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method [J]. European Physical Journal D, 2009, 54(2):153-158.
[17] PODLINSKI J, KOCIK M, MIZERACZYK J. Measurements of EHD flow patterns in ESP with DC plus Pulsed voltage hybrid power supply [C]//Electrostatics 2007 Conference. St Catherines Coll, Oxford, England:Journal of Physics Conference Series, 2009:14.
[18] ZOUZOU N, DRAMANE B, MOREAU E, et al. EHD flow and collection efficiency of a DBD ESP in wire-to-plane and plane-to-plane configurations [J]. IEEE Transaction on Industry Applications, 2011, 47(1):336-343.
[19] RISTIMAKI J, VIRTANEN A, MARJAMAKI M, et al. On-line measurement of size distribution and effective density of submicron particles [J]. Journal of Aerosol Science, 2002, 33 (11): 1541-1557.
[20] DUMITRN L M, ATTEN P, BLANCHARD D, et al. Drift Velocity of fine particles estimated from fractional efficiency measurements in a laboratory-scaled electrostatic precipitator [J]. IEEE Transactions on Industry Applications, 2002, 38(3):852-857.
[21] ATTEN P, MCCLUSKEY F M J, LAHJOMR A C I. The electrohydrodynamic origin of turbulence in electrostatic precipitators [J]. IEEE Transactions on Industry Applications, 1987, IA-23(4):705-711.
[22] IEEE-DEIS-EHD Technical Committee. Recommended international standard for dimensionless parameters used in electrohydrodynamics [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(1):36.
[23] OHYAMA R, AOYAGI K, KITAHARA Y, et al. Visualization of the local ionic wind profile in a DC corona discharge field by laser-induced phosphorescence emission [J]. Journal of Visualization, 2007, 10(1):75-82.
[24] RICKARD M, RANKIN D D, WEINBERG F. Characterization of ionic wind velocity [J]. Journal of Electrostatics, 2005, 63(3):711-716.
[25] SCHWABE R J, SNADDON R W L, NELSON J K, et al. An optical study of negative-corona tuft distribution for pulsed electrostatic precipitator [J]. Journal of Physics D:Applied Physics, 1988, 21(4):546-551.

[1] ZHANG Lian-cheng, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Effects of hydrostatic pressure on pulsed discharge and deep-towed seismic source[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1395-1400.
[2] KOU Yan-qin, ZHENG Chao, XU Yu-zhen, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Water disinfection of E. coli by pulsed low electric fields[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 806-812.
[3] SHEN Xin-jun, WANG Shi-long, Han Ping, ZHENG Qin-zhen, ZENG Yu-xuan, YAN Ke-ping. Visualization measurements of submicron particle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 1-8.
[4] KOU Yan-qin, ZHENG Chao, XU Yu-zhen, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Water disinfection of E. coli by pulsed low electric fields[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 3-4.
[5] ZHENG Chao, XU Yu-zhen, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Surface and water disinfection by pulsed plasma jet[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1329-1335.
[6] CHEN Xue-Liang, FAN Yong-Xian, HONG Zhao. Esterase fermentation in an external-loop airlift bioreactor and its application in D-lactic acid production[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 320-325.