Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 23-32    DOI: 10.3785/j.issn.1008-973X.2020.01.003
Mechanical Engineering     
Thermal topology optimization design method of spindle under temperature-structure field coupling condition based on irregular cell
Xiao-lei DENG1,2,3(),Ze-feng SHENG1,Jiang-lin ZHANG1,Xiao-wen LV1,Zhong HE1,Jian-chen WANG1,3,Jian-zhong FU2,*()
1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Yonglida CNC Technology Limited Company, Quzhou 324000, China
Download: HTML     PDF(2639KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hybrid cellular automaton method (HCAM) applied with irregular cell was proposed to realize the thermal topological optimization design for the coupled field of spindle structure in order to adapt to the complex geometrical shape and avoid the problem which the traditional regular rectangular cells could not uniformly cover the design area. The traditional rectangular cell of HCAM was replaced by irregular cell based on the theory of numerical heat transfer. The idea of local mesh refinement was introduced to realize local cell refinement in the area where the stress could be concentrated or strain sharp changed, and the cell size of the whole structure could adaptively change. The comparison analysis results show that the method is feasible. The method can effectively adapt to the complex structure shape, reduce the number of cellular elements and finite element grids, and reduce the difficulty of mapping between cellular elements and finite element grids. The thermal topology optimization design of the temperature-structure field coupling spindle structure under different working conditions was analyzed by using the irregular cell HCAM. Results showed that the final thermal topology optimization results not only reduced the material of spindle, but also improved its thermal characteristics.



Key wordsirregular cell      spindle      hybrid cellular automaton method      temperature-structure field coupling      topology optimization      thermal topology design     
Received: 18 December 2018      Published: 05 January 2020
CLC:  TH 161  
Corresponding Authors: Jian-zhong FU     E-mail: dxl@zju.edu.cn;fjz@zju.edu.cn
Cite this article:

Xiao-lei DENG,Ze-feng SHENG,Jiang-lin ZHANG,Xiao-wen LV,Zhong HE,Jian-chen WANG,Jian-zhong FU. Thermal topology optimization design method of spindle under temperature-structure field coupling condition based on irregular cell. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 23-32.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.003     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/23


基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法

为了适应复杂的几何形状,避免传统的规则矩形元胞不能均匀地覆盖设计区域的问题,实现主轴结构耦合场热拓扑优化设计,提出基于不规则元胞的混合元胞自动机法(HCAM)耦合场主轴热拓扑优化设计方法. 该方法以数值传热学的相关理论为基础,用三角形元胞来替代传统的矩形元胞,并引入局部网格细化的思想,在应力集中或应变急剧变化的区域实现局部元胞细化,使得整个结构的元胞尺寸自适应变化. 通过案例对比分析验证了该方法的可行性,该方法可以有效地适应复杂结构形状、减少元胞单元和有限元网格的数量以及降低元胞单元与有限元网格之间映射的难度. 利用不规则元胞的HCAM对主轴结构进行不同工况下的温度-结构场耦合热拓扑优化设计研究,最终获得的热拓扑优化构形结果不仅减少了主轴结构材料,而且改善了其热态特性.


关键词: 不规则元胞,  主轴,  混合元胞自动机法,  温度-结构场耦合,  拓扑优化,  热拓扑设计 
Fig.1 Neighborhoods of irregular cell
Fig.2 C-shaped structure and its irregular cells(elements)division result
Fig.3 Results comparison of different optimization algorithms for C-shaped structure
Fig.4 Half-ring structure and its irregular cells(elements)division result
Fig.5 Results comparison of different optimization algorithms for half-ring structure
Fig.6 Flat structure under temperature-structure field coupling and its irregular cells(elements)division results
Fig.7 Selected intermediate and final topologies of flat structure based on HCAM
Fig.8 Before and after optimization results comparison of flat structure
Fig.9 Performance index and quality ratio curve
Fig.10 Spindle test case under temperature loading
Fig.11 Irregular cells(elemnts)of spindle structure
Fig.12 Selected intermediate and final topologies of spindle test case based on HCAM
Fig.13 Before and after optimization results comparison of spindle test case
Fig.14 Performance index and quality ratio history curve of HCAM
Fig.15 Spindle test case under heat flux
Fig.16 Selected intermediate and final topologies of spindle test case based on HCAM
Fig.17 Before and after optimization results comparison of spindle test case
Fig.18 Performance index and quality ratio history curve of HCAM
[1]   MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61 (2): 771- 791
doi: 10.1016/j.cirp.2012.05.008
[2]   LIU J F, ZHANG P Thermo-mechanical behavior analysis of motorized spindle based on a coupled model[J]. Mechancial Engineering, 2018, 10 (1): 1- 12
[3]   ABELE E, ALTINTAS Y, BRECHER C Machine tool spindle units[J]. CIRP Annals - Manufacturing Technology, 2010, 59 (2): 781- 802
doi: 10.1016/j.cirp.2010.05.002
[4]   邓小雷, 林欢, 王建臣, 等 机床主轴热设计研究综述[J]. 光学精密工程, 2018, 26 (6): 1415- 1429
DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al Review on thermal design of machine tools’ spindle[J]. Optics and Precision Engineering, 2018, 26 (6): 1415- 1429
[5]   邓小雷, 傅建中, 贺永, 等 精密数控机床主轴系统多物理场耦合热态特性[J]. 浙江大学学报: 工学版, 2013, (10): 1863- 1870
DENG Xiao-lei, FU Jian-zhong, HE Yong, et al Multi-field coupling thermal characteristics analysis for spindle system of the precision CNC machine tool[J]. Journal of Zhejiang University: Engineering Science, 2013, (10): 1863- 1870
[6]   BOCHENEK B, KATARZYNA T Novel local rules of cellular automata applied to topology and size optimization[J]. Engineering Optimization, 2012, 44 (1): 23- 25
doi: 10.1080/0305215X.2011.561843
[7]   FARAMARZI A, AFSHAR M H Application of cellular automata to size and topology optimization of truss structures[J]. Scientia Iranica, 2012, 19 (3): 373- 380
doi: 10.1016/j.scient.2012.04.009
[8]   BAETENS J M, DE LOOF K, DE BAETS B Influence of the topology of a cellular automaton on its dynamical properties[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (3): 651- 668
doi: 10.1016/j.cnsns.2012.08.018
[9]   TOVAR A, QUEVEDO W I, PATEL N M, et al. Hybrid cellular automata with local control rules: a new approach to topology optimization inspired by bone functional adaptation [C] // 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro: WCSMO, 2005: Brazil: 1-11.
[10]   TOVAR A, PATEL N M, KAUSHIK A K, et al Optimality conditions of the hybrid cellular automata for structural optimization[J]. AIAA Journal, 2007, 45 (3): 673- 683
doi: 10.2514/1.20184
[11]   TOVAR A, PATEL N M, NIEBUR G L, et al Topology optimization using a hybrid cellular automaton method with local control rules[J]. Journal of Mechanical Design, 2006, 128: 1205- 1216
doi: 10.1115/1.2336251
[12]   BANDI P, SCHMIEDELER J P, TOVAR A Design of crashworthy structures with controlled energy absorption in the hybrid cellular automaton framework[J]. Journal of Mechanical Design, 2013, 135: 091002-1- 11
[13]   SOOBUM L, ANDRE′S T Topology optimization of piezoelectric energy harvesting skin using hybrid cellular automata[J]. Journal of Mechanical Design, 2013, 135: 1- 11
[14]   GOETZ J, TAN H, RENAUD J, et al Two-material optimization of plate armor for blast mitigation using hybrid cellular automata[J]. Engineering Optimization, 2012, 44 (8): 985- 1005
doi: 10.1080/0305215X.2011.624182
[15]   郭连水, PUNIT B, JOHN E R 一种大变形多空间域连续体结构拓扑优化方法[J]. 北京航空航天大学学报, 2009, 35 (2): 227- 230
GUO Lian-shui, PUNIT B, JOHN E R Method of multi-domain topology optimization for continuum structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35 (2): 227- 230
[16]   GUO L S, TOVAR A, PENNINGER C L, et al Strain-based topology optimization for crashworthiness using hybrid cellular automata[J]. International Journal of Crashworthiness, 2011, 13 (3): 239- 252
[17]   高云凯, 张玉婷, 方剑光 基于混合元胞自动机的铝合金保险杠横梁设计[J]. 同济大学学报: 自然科学版, 2015, 43 (3): 456- 461
GAO Yun-kai, ZHANG Yu-ting, FANG Jian-guang Design of an aluminum bumper beam based on hybrid cellular automata[J]. Journal of Tongji University: Natural Science, 2015, 43 (3): 456- 461
[18]   DA D C, CHEN J H, CUI X Y, et al Design of materials using hybrid cellular automata[J]. Structural and Multidisciplinary Optimization, 2017, 56: 131- 137
doi: 10.1007/s00158-017-1652-1
[19]   WENG S B, DENG X L, LIN H, et al Research on thermal topology design method of spindle based on HCAM[J]. IOP Conference Series: Materials Science and Engineering, 2017, 281: 012048
doi: 10.1088/1757-899X/281/1/012048
[20]   BOCHENEK B, KATARZYNA T Z GOTICA - generation of optimal topologies by irregular cellular automata[J]. Structural and Multidisciplinary Optimization, 2017, 55 (6): 1989- 2001
doi: 10.1007/s00158-016-1614-z
[1] Yun-kai GAO,Chao MA,Zhe LIU,Ya-nan XU. Stress-based topology optimization based on global measure of distort energy density[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2169-2178.
[2] XIE Jie, HUANG Xiao-diao, FANG Cheng-gang, ZHOU Bao-cang, LU Ning. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 247-254.
[3] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[4] XIONG Fei, HAO Zhi yong, ZHENG Xu, LIU Rui jun. Design of low loudness timing cover based on multiobjective topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 970-977.
[5] HUANG Wei di, GAN Chun biao, YANG Shi xi. Dynamic modeling and vibration response analysis of high speed motorized spindle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2195-2206.
[6] MA Chi, YANG Jun, ZHAO Liang, MEI Xue song, SHI Hu, WANG Xin meng. Thermal characteristics analysis and experimental study on high speed spindle system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2092-2102.
[7] DENG Xiao-lei,FU Jian-zhong,SHEN Hong-yao, CHEN Zi-chen. Thermal equilibrium test for multi spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1646-1653.
[8] YANG Zhao-hui, ZHANG Jin-hua, HONG Jun, YAO Jian-guo, WANG Yu. Errors analysis of ultra-precision measurement system for rotational accuracy of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1095-1101.
[9] YANG Zhao-hui, ZHANG Jin-hua, HONG Jun, YAO Jian-guo, WANG Yu. Errors analysis of ultra-precision measurement system for rotational accuracy of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 0-00.
[10] LI Sheng,YAO Xin-hua,FU Jian-zhong. Communication quality constraint-based location optimization of 
wireless sensor in thermal  monitoring of spindle
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1281-1286.
[11] ZHANG Huan-yu, HAO Zhi-yong. Influence of flywheel cover structural stiffness on engine
body NVH performance
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 261-266.
[12] SHAN Yan-ling, GAO Bo-qing. Analysis of latticed shell structure’s robust configurations based on continuum topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2118-2124.
[13] DENG Xiao-lei, FU Jian-zhong, HE Yong, CHEN Zi-chen. Multi-field coupling thermal characteristics analysis for spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1863-1870.
[14] JIANG Jun-Xia, FAN Zi-Chun, GUO Zhi-Min, KE Yang-Lin. Design and optimization of flexible assembly platform used for
three sections joint
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1798-1804.
[15] ZHONG Mei-Feng, ZHENG Shui-Yang, BO Xiao-Hong. Finite element analysis and topology optimization of direct-drive compressor valve[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(12): 2305-2308.