Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1674-1680    DOI: 10.3785/j.issn.1008-973X.2019.09.005
Mechanical Engineering     
Analysis and improvement on elastic-plastic micro-contact modelof rough surface
Jian CHEN1(),Jin-hua ZHANG1,Lin-bo ZHU2,*(),Jun HONG1
1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University , Xi’an 710049, China
2. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Download: HTML     PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shortcomings of existing interpolation polynomial and power-exponential micro-contact models were compared and analyzed, in order to accurately describe the micro-contact characteristics of rough surfaces. An improved elastic-plastic micro-contact model considering the material properties was proposed using a normalization method. Compared with the existing models, the improved model has good continuity and smoothness at the yield critical and full plastic critical points, also taking into account the influence of material’s Poisson’s ratio on the maximum contact pressure factor. Results show that the proposed model can describe the micro-contact characteristics more continuously, smoothly and monotonously, compared with the classical KE model and Lin model; the contact area of asperity is independent of the Poisson's ratio of the material, and is not affected by the maximum contact pressure factor; and the average contact pressure, contact load and contact stiffness of asperity are related to the Poisson's ratio, which are also proportional to the maximum contact pressure factor.



Key wordsmicro-contact      elastic-plastic deformation      interpolation polynomial      power exponential function      material properties      rough surface     
Received: 30 November 2018      Published: 12 September 2019
CLC:  O 343  
Corresponding Authors: Lin-bo ZHU     E-mail: jxfb0602@163.com;linbozhu@mail.xjtu.edu.cn
Cite this article:

Jian CHEN,Jin-hua ZHANG,Lin-bo ZHU,Jun HONG. Analysis and improvement on elastic-plastic micro-contact modelof rough surface. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1674-1680.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.005     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1674


粗糙表面弹塑性微接触模型分析与改进

为了准确描述粗糙表面微接触特性,对比分析现有插值多项式类和幂指函数类微接触模型存在的不足,采用量纲归一化方法,提出一种考虑材料属性的弹塑性微接触改进模型. 与现有模型相比,改进后的微接触模型在屈服临界点和全塑性临界点处具有良好的连续性和光滑性,且考虑了材料泊松比对最大接触压力因子的影响. 结果表明:较经典的KE模型和Lin模型,提出的模型能够连续、光滑和单调地描述微接触特性;微凸体接触面积与材料泊松比无关,且不受最大接触压力因子取值的影响;微凸体的平均接触压力、接触载荷和接触刚度与材料泊松比相关,且与最大接触压力因子成正比.


关键词: 微接触,  弹塑性变形,  插值多项式,  幂指函数,  材料属性,  粗糙表面 
Fig.1 Diagram for contact between asperity and rigid smooth plane
模型 微凸体接触特性 临界点
接触面积 平均接触压力 接触载荷 屈服 全塑性
ZMC[7] 4次多项式 对数多项式 接触面积和
平均接触压力的乘积
${\delta _{{\rm{ec}}}}$ $54{\delta _{{\rm{ec}}}}$
Zhao[8] ZMC模型 3.5次多项式 $110{\delta _{{\rm{ec}}}}$
Brake[9] 3次多项式 3次多项式 $110{\delta _{{\rm{ec}}}}$
Xu[10] Brake模型 椭圆曲线 $110{\delta _{{\rm{ec}}}}$
Li[11] 3次多项式 ZMC模型 $110{\delta _{{\rm{ec}}}}$
Tab.1 Comparisons for micro-contact model of interpolation polynomial
Fig.2 Comparison of contact area predicted different template functions
Fig.3 Comparison of contact characteristics predicteddifferent models
幂指表达式 KE模型[12] Lin模型[13] Wang模型[14]
α β α β α β
注:KE 模型有 2 个弹塑性变形区间(弹塑性区间Ⅰ: $1 \leqslant \delta /{\delta _{{\rm{ec}}}} \leqslant 6$;弹塑性区间Ⅱ: $6 \leqslant \delta /{\delta _{{\rm{ec}}}} \leqslant 110$),Lin 模型和 Wang 模型只有 1 个弹塑性变形区间.
$\frac{{{A_{{\rm{ep}}}}}}{{{A_{{\rm{ec}}}}}} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\rm{ec}}}}}}} \right)^\beta }$ 0.93 1.136 1.00 1.159 7 1.00 1.158 1
0.94 1.146
$\displaystyle\frac{{{p_{{\rm{ep}}}}}}{{\sigma }} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\text{ec}}}}}}} \right)^\beta }$ 1.19 0.289 1.08 0.220 4 1.00 0.209 1
1.61 0.117
$\frac{{{F_{{\rm{ep}}}}}}{{{F_{{\rm{ec}}}}}} = \alpha {\left( {\displaystyle\frac{\delta }{{{\delta _{{\rm{ec}}}}}}} \right)^\beta }$ 1.03 1.425 1.00 1.380 1 1.00 1.367 3
1.40 1.263
全塑性临界点 $\delta _{\rm pc2}^{\rm KE} = 110{\delta _{{\rm{ec}}}}$ $\delta _{\rm pc}^{\rm Lin} = 76.8{\delta _{{\rm{ec}}}}$ $\delta _{\rm pc}^{\rm Wang} = 80{\delta _{{\rm{ec}}}}$
Tab.2 Comparison of coefficient and exponent in power exponential function models
Fig.4 Change of dimensionless average contact pressure with dimensionless deformation
Fig.5 Change of maximum contact pressure factor withPoisson's ratio
Fig.6 Change of dimensionless contact load with dimensionless deformation
Fig.7 Change of dimensionless contact stiffness with dimensionless deformation
[1]   毛宽民, 黄小磊, 李斌, 等 一种机床固定结合部的动力学参数化建模方法[J]. 华中科技大学学报, 2012, 40 (4): 49- 53
MAO Kuan-min, HUANG Xiao-lei, LI Bin, et al Dynamic and parameterized modeling of fixed joints in machine tools using surface response method[J]. Journal of Huazhong University of Science and Technology, 2012, 40 (4): 49- 53
[2]   朱林波, 庄艳, 洪军, 等 一种考虑侧接触的微凸体弹塑性接触力学模型[J]. 西安交通大学学报, 2013, 47 (11): 48- 52
ZHU Lin-bo, ZHUANG Yan, HONG Jun, et al Elastic-plastic model for contact of two asperities considering shoulder-shoulder contact[J]. Journal Of Xi’an Jiaotong University, 2013, 47 (11): 48- 52
doi: 10.7652/xjtuxb201311009
[3]   张学良, 王南山, 温淑花, 等 机械结合面切向接触阻尼能量耗散弹塑性分形模型[J]. 机械工程学报, 2013, 49 (12): 43- 49
ZHANG Xue-liang, WANG Nan-shan, WEN Shu-hua, et al Elastoplastic fractal model for tangential contact damping energy dissipation of machine joint interfaces[J]. Journal of Mechanical Engineering, 2013, 49 (12): 43- 49
[4]   ABBOTT E J, FIRESTONE F A Specifying surface quality: a method based on accurate measurement and comparison[J]. Institution of Mechanical Engineers, 1933, 55: 572- 596
[5]   GREENWOOD J A, WILLIAMSON J B P Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295 (1442): 300- 319
[6]   CHANG W R, ETSION I, BOGY D B An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109 (2): 257- 263
doi: 10.1115/1.3261348
[7]   ZHAO Y, MAIETTA D M, CHANG L An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122 (1): 86- 93
doi: 10.1115/1.555332
[8]   赵永武, 吕彦明, 蒋建忠 新的粗糙表面弹塑性接触模型[J]. 机械工程学报, 2007, 43 (3): 95- 101
ZHAO Yong-wu, LU Yan-ming, JIANG Jian-zhong New elastic-plastic model for the contact of rough surface[J]. Journal of Mechanical Engineering, 2007, 43 (3): 95- 101
doi: 10.3321/j.issn:0577-6686.2007.03.016
[9]   BRAKE M R An analytical elastic-perfectly plastic contact model[J]. International Journal of Solids and Structures, 2012, 49 (22): 3129- 3141
doi: 10.1016/j.ijsolstr.2012.06.013
[10]   徐超, 王东 一种改进的粗糙表面法向弹塑性接触解析模型[J]. 西安交通大学学报, 2014, 48 (11): 115- 121
XU Chao, WANG Dong An improved analytical model for normal elastic-plastic contact of rough surfaces[J]. Journal Of Xi’an Jiaotong University, 2014, 48 (11): 115- 121
[11]   李玲, 蔡安江, 蔡力钢, 等 螺栓结合面微观接触模型[J]. 机械工程学报, 2016, 52 (7): 205- 212
LI Ling, CAI An-jiang, CAI Li-gang, et al Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering, 2016, 52 (7): 205- 212
[12]   KOGUT L, ETSION I Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69 (5): 657- 662
doi: 10.1115/1.1490373
[13]   LIN L P, LIN J F An elastoplastic microasperity contact model for metallic materials[J]. Journal of Tribology, 2005, 127 (3): 666- 672
doi: 10.1115/1.1843830
[14]   王东, 徐超, 万强 一种考虑微凸体法向弹塑性接触的粗糙面力学模型[J]. 上海交通大学学报, 2016, 50 (8): 1264- 1269
WANG Dong, XU Chao, WAN Qiang A normal mechanical model for elastic-plastic contact of rough surface[J]. Journal of Shanghai Jiaotong University, 2016, 50 (8): 1264- 1269
[15]   FRANCIS H A Phenomenological analysis of plastic spherical indentation[J]. Journal of Engineering Materials and Technology Transactions of the ASME, 1976, 98 (3): 272- 281
doi: 10.1115/1.3443378
[16]   黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2012.
[1] WANG Jiu gen,FENG Lan lan,LI Yang. Influences of surface topography on electrical pitting[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2025-2032.
[2] LIU Hui-jing, HONG Jun, YANG Guo-qing, ZHU Lin-bo. Tangential sliding characteristics of asperities[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1114-1119.
[3] XU Jing-hua, ZHANG Shu-you, YI Guo-dong, TU Li, GUANG Yao. Object variation oriented kinematics optimization design
for manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 209-216.