Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Tangential sliding characteristics of asperities
LIU Hui-jing1, HONG Jun1, YANG Guo-qing1,2, ZHU Lin-bo1
1. State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. College of Electromechanical Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China
Download:   PDF(945KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the micro tangential sliding characteristics of rough surfaces, a nite element analysis (FEA) model with the shape of the rotary parabola was proposed to simulate tangential sliding of asperities. The model can deal with the deformation mechanism of elastic, elastic-plastic and plastic. The effects of the tangential and normal distance on the tangential and normal force were discussed in the whole tangential sliding process. Based on the results, the fitting formula of the dimensionless variation of the load was presented. Using the Kogut’s elastic-plastic model named KE model, the shoulder to shoulder contact model was deduced to explain the sliding characteristics. It is shown that the KE shoulder to shoulder contact model is valid for the case of small deformations. However, for the large sliding distance, the plastic flow along the slip direction increases with the increasing sliding distance, and the errors between KE model and the FEA model become larger. In addition, the maximum, the minimum and the mean value of the loads have obvious change trends. The simulating and theoretical research of the sliding characteristics between asperities provides a foundation for the study of the sliding characteristics between rough surfaces.



Published: 01 April 2015
CLC:  TH 123  
Cite this article:

LIU Hui-jing, HONG Jun, YANG Guo-qing, ZHU Lin-bo. Tangential sliding characteristics of asperities. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1114-1119.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.06.021     OR     http://www.zjujournals.com/eng/Y2014/V48/I6/1114


微凸体切向滑移特性

为了从微观角度探究粗糙表面的切向滑移特性,构建一种具有回转抛物体形状的微凸体切向滑移有限元模型.该模型综合考虑了材料的弹性、弹塑性变形和塑性变形特征,分析整个切向滑移过程中切向、法向合力分别随切向、法向位移等参数的变化规律,并给出接触载荷的无量纲化拟合公式;推导了基于Kogut弹塑性(KE)模型的侧接触力学模型,并用该理论解释切向滑移特性.分析表明:KE模型侧接触模型仅仅适用于小变形范围;切向滑移位移越大,切向的塑性流动越大,KE模型侧接触模型与仿真模型的误差也越大;另外,载荷的最大值、最小值和均值都表现出了明显的变化规律.微凸体切向滑移特性的仿真分析以及侧接触理论研究为粗糙表面接触特性的研究奠定了基础.

[1] GREENWOOD J A, WILLIAMSON J. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295(1442): 300-319.
[2] LIN L P, LIN J F. An elastoplastic microasperity contact model for metallic materials[J]. Journal of Tribology, 2005, 127(3): 666-672.
[3] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[4] JACKSON R L, GREEN I. A finite element study of elasto-plastic hemispherical contact against a rigid flat[J]. Journal of Tribology, 2005, 127(2): 343-354.
[5] 赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007, 43 (3): 95-101.
ZHAO Yong-wu, LU Yan-ming, JIANG Jian-zhong. A new elastic-plastic contact model between rough surfaces[J]. Chinese Journal of Mechanical Engineering, 2007, 43 (3): 95-101.
[6] SEPEHRI A, FARHANG K. On elastic interaction of nominally flat rough surfaces[J]. Journal of Tribology, 2008, 130(1): 1101401-110140105.
[7] KOGUT L, ETSION I. A finite element-based elastic-plastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46(3): 383-390.
[8] FAULKNER A, ARNELL R D. The development of a nite element model to simulate the sliding interaction between two, three-dimensional, elasto-plastic, hemispherical asperities[J]. Wear, 2000, 242(1): 114-122.
[9] JACKSON R L, DUVVURU R S, MEGHANI H, et al. An analysis of elasto-plastic sliding spherical asperity interaction[J]. Wear, 2007, 262(1): 210-219.
[10] BRIZMER V, KLIGERMAN Y, ETSION I. A model for junction growth of a spherical contact under full stick condition[J]. Journal of Tribology, 2007, 129(4): 783-790.
[11] BRIZMER V, KLIGERMAN Y, ETSION I. Elastic-plastic spherical contact under combined normal and tangential loading in full stick[J]. Tribology Letters, 2007, 25(1): 61-70.
[12] ZOLOTAREVSKIY V, KLIGERMAN Y, ETSION I. The Evolution of Static Friction for Elastic-Plastic Spherical Contact in Pre-sliding[J], Journal of Tribology, 2011, 133(3):3450201-3450203.
[13] OVCHARENKO A, HALPERIN G, ETSION I. Experimental study of adhesive static friction in a spherical elastic-plastic contact[J]. Journal of Tribology, 2008, 130(2): 2140101-2140106.
[14] OVCHARENKO A, HALPERIN G, ETSION I,et al. A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact[J]. Tribology Letters, 2006, 23(1): 55-63.
[15] WU Ai-zhong, SHI Xi. An elastic-plastic spherical contact model under combined normal and tangential loading[J]. Journal of Applied Mechanics, 2012, 79(5): 5100101-5100109.

[1] FENG Yan, YU Xiao-li, LIU Zhen-tao. Fractal model of normal contact stiffness based on thermal elasto-plastic theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1553-1558.
[2] AI Qing-lin, ZU Shun-jiang, XU Fang. Review of kinematics and singularity of parallel manipulator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1345-1359.
[3] CHEN Xiao-ping, YU Xiao-li, HU Ru-fu, LI Jian-feng,. Component fatigue limit prediction based on notched specimen equivalence and asymptotic interpolation integrated method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 542-548.
[4] AI Qing-lin, HUANG Wei-feng, ZU Shun-jiang. Numeric analysis of mechanics of steel band parallel robot
based on screw theory
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(9): 1650-1656.
[5] ZHOU Lei, TU Zhong-Hua. Model of straightening T-rail based on elastic-plastic theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 368-372.