Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 965-971    DOI: 10.3785/j.issn.1008-973X.2019.05.018
    
Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging
Yun QI(),Da-ming SUN*(),Shi-yue SU,Xin QIAO
Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang University, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1211KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A system capable of rapidly cooling magnets from room temperature to below 60 K was designed, in order to reduce the resource consumption and economic cost of cooling the low temperature superconducting magnet of magnetic resonance imaging (MRI). Furthermore, the design optimization and in-depth analysis were carried out by numerical simulation based on its mathematical physics model. A self-developed single-stage Stirling cryocooler with large cooling capacity was used as the cold source of this system, comprising a cryogenic fan, control valves and one helium gas cylinder. Results showed that the cooling performance can be improved by optimizing the operating parameters of system, of which the pressure and flow rate of helium gas were particularly critical, because they can significantly affect the pressure drop and heat transfer and further affect the cooling time and temperature that the magnet could ultimately attain. Moreover, the current cold end heat exchanger performance of Stirling cryocooler still had space for promotion. This system can achieve a fast cooling rate at helium pressure of 0.3 MPa and flow rate of 13 m/s through parameter optimization. A superconducting magnet weighing 2 tons can be cooled to below 60 K from room temperature within 73.5 h based on the above condition, which showed that it had the potential to achieve low energy consumption and high efficiency of cooling MRI low temperature superconducting magnet in practical applications.



Key wordsmagnetic resonance imaging (MRI)      cryogenics      superconducting magnet      circulating cooling      Stirling cryocooler     
Received: 17 October 2018      Published: 17 May 2019
CLC:  TB 651  
Corresponding Authors: Da-ming SUN     E-mail: 21627052@zju.edu.cn;sundaming@zju.edu.cn
Cite this article:

Yun QI,Da-ming SUN,Shi-yue SU,Xin QIAO. Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 965-971.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.018     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/965


磁共振成像低温超导磁体冷却系统设计及数值分析

为了减小冷却磁共振成像(MRI)低温超导磁体的资源消耗和经济成本,设计可快速冷却室温磁体至60 K以下的系统,并通过建立数学物理模型进行数值模拟,对系统进行优化设计和深入分析. 系统以自主研发的大冷量单级斯特林制冷机为冷源,包括低温风机、低温调控阀和氦气罐等组成部分. 研究表明,优化系统运行参数可以显著提高冷却性能,其中系统内氦气的压力和流速尤为关键,因为两者能够显著影响压降与换热,进而影响冷却时间以及磁体最终所能达到的冷却温度. 此外,当前斯特林制冷机的冷端换热器性能尚有提升空间. 通过参数优化,系统在氦气压力为0.3 MPa、流速为13 m/s时能够达到较快的冷却速率,可在73.5 h内将质量为2 t的室温超导磁体冷却至60 K以下,有潜力在实际应用中实现MRI低温超导磁体的低能耗高效冷却.


关键词: 磁共振成像(MRI),  低温,  超导磁体,  循环冷却,  斯特林制冷机 
Fig.1 Schematic diagram of cooling system for MRI low temperature superconducting magnet
Fig.2 Partial sectional view of cold end heat exchanger
Fig.3 Logic block diagram of Matlab program calculation
参数 数值 单位
铜基磁体质量 500 kg
铁基磁体质量 1 500 kg
磁体流道横截面积 0.3 m2
磁体流道换热面积 6.1 m2
制冷机换热管外径 2.5 mm
制冷机换热管数量 90 ?
循环管路总长度 11 m
管路充气压力 <0.8 MPa
Tab.1 Input parameters of Matlab program for numerical calculation
Fig.4 Effect of charge pressure on cooling time
Fig.5 Effect of charge pressure on heat transfer coefficient and pressure drop
Fig.6 Effect of helium flow rate on cooling time
Fig.7 Effect of flow rate on heat transfer coefficient and pressure drop
Fig.8 Variation of temperature during cooling process
Fig.9 Variation of convective heat transfer coefficient of cold end of cryocooler during cooling process
[1]   倪萍, 赵明, 陈自谦 MRI磁体技术的发展历程及展望[J]. 中国医疗设备, 2013, 28 (10): 6- 10
NI Ping, ZHAO Ming, CHEN Zi-qian Development and recent progress of MRI magnet technology[J]. Chinese Journal of Medical Equipment, 2013, 28 (10): 6- 10
doi: 10.3969/j.issn.1674-1633.2013.10.002
[2]   余慧娴 超导MRI磁体无液氦改造探讨[J]. 中国医疗器械杂志, 2014, 38 (1): 23- 25
YU Hui-xian The discussion of superconducting MRI magnet transformation without LHe[J]. Chinese Journal of Medical Instrumentation, 2014, 38 (1): 23- 25
[3]   TAKASHI N, DAIKI T, YOUSUKE Y, et al Development of a superconducting bulk magnet for NMR and MRI[J]. Journal of Magnetic Resonance, 2015, 259: 68- 75
doi: 10.1016/j.jmr.2015.07.012
[4]   卢杰, 甘智华, 邱利民, 等 脉管制冷用于低温超导磁体冷却的可行性分析[J]. 低温物理学报, 2005, 27 (5): 939- 943
LU Jie, GAN Zhi-hua, QIU Li-min, et al Possibility of pulse tube refrigeration for low-temperature superconducting magnets[J]. Chinese Journal of Low Temperature Physics, 2005, 27 (5): 939- 943
[5]   刘宏伟. 制冷机冷却的超导磁体的稳定性研究[D]. 北京:中国科学院电工研究所, 2006.
LIU Hong-wei. Stability study on cryocooler-cooled superconducting magnet [D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006.
[6]   SUN D M, CHAO W, SUN J C, et al Advances in high power Stirling-type pulse tube cooler[J]. IEEE Transactions on Superconductor, 2010, 20 (3): 2043- 2046
doi: 10.1109/TASC.2010.2041345
[7]   HOENIG M O Design concepts for a mechanically refrigerated 13 K superconducting magnet system[J]. IEEE Transactions on Magnetics, 1983, 19 (3): 880- 883
doi: 10.1109/TMAG.1983.1062538
[8]   WATANABE K, AWAJI S, TAKAHASHI K, et al Con-struction of the cryogen-free 23 T hybrid magnet[J]. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 678- 681
doi: 10.1109/TASC.2002.1018492
[9]   KURUSU T, ONO M, HANAI S, et al A cryocooer-cooled 19 T superconducting magnet with 52 mm room temperature bore[J]. IEEE Transactions on Applied Super-conductivity, 2004, 14 (2): 393- 396
doi: 10.1109/TASC.2004.829679
[10]   WATANABE K, NISHIJIMA G, AWAJI S, et al Performance of a cryogen-free 30 T-class hybrid magnet[J]. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 934- 939
doi: 10.1109/TASC.2006.870787
[11]   MORIEA T, SHIRAISHIB T, XU M Y Experimental investigation of cooling capacity of 4 K GM cryocoolers in magnetic fields[J]. Physics Procedia, 2015, 67: 474- 478
doi: 10.1016/j.phpro.2015.06.061
[12]   IWASA Y, BASCUNAN J, HAHN S, et al Solid-cryogen cooling technique for superconducting magnets of NMR and MRI[J]. Physics Procedia, 2012, 36: 1348- 1353
doi: 10.1016/j.phpro.2012.06.303
[13]   GIEBELER F, THUMMES G, BEST K J A 5 T persistent current niobium-titanium magnet with a 4 K pulse tube cryocooler[J]. Superconductor Science and Technology, 2004, 17 (5): 135- 139
doi: 10.1088/0953-2048/17/5/009
[14]   JIN H B Vertical access zero boil off frampable superconducting magnet system with horizontal field for semicon ductor crystal growth[J]. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 1656- 1659
doi: 10.1109/TASC.2003.812856
[15]   CHOI Y S, KIM D L, SHIN D W Cool-down characteristic of conduction-cooled superconducting magnet by a cryocooler[J]. Physica C, 2011, 471 (21/22): 1440- 1444
[16]   CHOI Y S, KIM D L, SHIN D W Optimal cool-down time of a 4 K superconducting magnet cooled by a two-stage cryocooler[J]. Cryogenics, 2012, 52 (1): 13- 18
doi: 10.1016/j.cryogenics.2011.10.002
[17]   INMYONG P, SANGKWONA J Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet[J]. Cryogenics, 2017, 88: 106- 115
doi: 10.1016/j.cryogenics.2017.09.008
[18]   ANASHKIN O P Cryogen-free HTS coil placed in a heat-exchange gas[J]. Cryogenics, 2002, 42 (5): 295- 297
doi: 10.1016/S0011-2275(02)00037-1
[19]   TSUKANOV V, BRAGIN A, KHRUSHCHEV S Performance of nitrogen heat tubes in cooling down of superconducting magnets[J]. Physics Procedia, 2016, 84: 90- 95
doi: 10.1016/j.phpro.2016.11.016
[20]   DAI Y M, YAN L G, ZHAO B Z, et al Tests on a 6 T conduction-cooled superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 961- 964
doi: 10.1109/TASC.2006.873331
[21]   张楷浩, 邱利民, 甘智华, 等 制冷机传导冷却的超导磁体冷却系统研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (7): 1213- 1226
ZHANG Kai-hao, QIU Li-min, GAN Zhi-hua, et al Advance in cryogenic system of cryocooled super-conducting magnet[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (7): 1213- 1226
[22]   张海峰, 叶海峰, 章学华, 等 传导冷却型低温超导磁体系统的设计与实验[J]. 低温工程, 2015, (5): 28- 32
ZHANG Hai-feng, YE Hai-feng, ZHANG Xue-hua, et al Design and experiment of conduction cooled superconducting magnet system[J]. Cryogenics, 2015, (5): 28- 32
doi: 10.3969/j.issn.1000-6516.2015.02.006
[23]   蔡亚超, 徐雅, 沈惬, 等 大功率斯特林制冷机的整机数值模拟[J]. 低温工程, 2014, (3): 27- 31
CAI Ya-chao, XU Ya, SHEN Qie, et al Numerical simulation of a high power Stirling cryocooler[J]. Cryogenics, 2014, (3): 27- 31
doi: 10.3969/j.issn.1000-6516.2014.03.006
[24]   徐雅, 蔡亚超, 沈惬, 等 液氮温区大冷量斯特林制冷机优化研究[J]. 工程热物理学报, 2015, 10: 2083- 2086
XU Ya, CAI Ya-chao, SHEN Qie, et al Optimization study on high cooling capacity Stirling cryocooler working on liquid nitrogen temperature[J]. Journal of Engineering Thermophysics, 2015, 10: 2083- 2086
[25]   席有民. 微型整体式斯特林制冷机研制及整机工程化模型研究[D]. 武汉: 华中科技大学, 2005.
XI You-min. Development of miniature integral type Stirling cryocoolers and investigation on the cooler industrialization model [D]. Wuhan: Huazhong University of Science and Technology, 2005.
[26]   蔡亚超. 大冷量整体式斯特林制冷机工作特性研究[D]. 杭州: 浙江大学, 2015.
CAI Ya-chao. Working performance investigation on a high-power integral-type Stirling cryocooler [D]. Hangzhou: Zhejiang University, 2015.
[27]   GNIELINSKI V New equations for heat mass transfer in turbulent pipe and channel flows[J]. International Chemical Engineering, 1976, 16: 359- 368
[28]   SHAH R K, LONDON A L Laminar flow forced convection in ducts[J]. Journal of Fluids Engineering, 1978, 102 (2): 431- 455
[1] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 792-797.
[2] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1-2.
[3] ZHANG Kai-hao, QIU Li-min, GAN Zhi-hua, ZHOU Xiao-xiao. Advance in cryogenic system of cryocooled superconducting magnet[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1213-1226.
[4] LIU Yang, WU Zhan-xiong, ZHU Shan-an, HE Bin. Induced current magnetic resonance electrical impedance tomography
for anisotropic brain tissues
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 168-172.