[1] OZPARLAK L, DER Y Z. Induced current magnetic resonanceelectrical impedance tomography [J] . Physiological Measurement, 2005, 26(2): 289-305.
[2] XU Y, HE B. Magnetoacoustic tomography with magnetic induction [J]. Physics in Medicine and Biology, 2005, 50(21): 5175-5187.
[3] HE B. Modeling and imaging of bioelectrical activity: principles and applications [M]. USA: Kluwer Academic Publishers, 2004: 128.
[4] HE B. Neural engineering [M]. USA: Kluwer Academic Publishers, 2005: 206.
[5] GAO N, ZHU S A, HE B. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement [J]. Physics in Medicine and Biology, 2005, 50(11): 2675-2687.
[6] GAO N, ZHU S A, HE B. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSMMREIT algorithm with applications to estimation of human head conductivity [J]. Physics in Medicine and Biology, 2006, 51(12): 3067-3083.
[7] 闫丹丹,张孝通,朱善安,等.头部异物两步和磁共振电阻抗成像算法的仿真研究 [J].浙江大学学报:工学版,2008,42(4):661-666.
YAN Dandan, ZhANG Xiaotong, ZHU Shanan, et al. Simulation study on twostep magnetic resonance electrical impedance tomography of brain anomaly tissues [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(4): 661-666.
[8] AKHTARI M, BRYANT H C, MAMELAK A N, et al. Conductivities of threelayer live human skull [J].Brain Topography, 2000, 14(3): 151-167.
[9] ZHANG Y C, ZHU S A, HE B. A secondorder finite element algorithm for solving the threedimensional EEG forward problem [J]. Physics in Medicine and Biology, 2004, 49(13): 2975-2987.
[10] NICHOLSON P W. Specific impedance of cerebral white matter [J]. Experimental Neurology, 1965, 13(4): 386-401.
[11] BASSER P J, MATTIELLO J, LEBIHAN D. MR diffusion tensor spectroscopy and imaging [J]. Biophysical Journal, 1994, 66(1): 259-267.
[12] TUCH D S, WEDEEN V J, DALE A M, et al. Conductivity tensor mapping of the human brain using diffusion MRI [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11697-11701.
[13] WOLTERS C H, ANWANDER A, TRIOCHE X, et al. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using highresolution finite element modeling [J]. NeuroImage, 2006, 30(3): 813-826.
[14] ZHANG Y C, DING L, DRONGELEN W V, et al. A cortical potential imaging study from simultaneous extra and intracranial electrical recordings by means of the finite element method [J]. NeuroImage, 2006, 31(4): 1513-1524.
[15] ZHANG Y C, VAN DRONGELEN W, HE B. Estimation of in vivo human braintoskull conductivity ratio with the aid of intracranial electrical simulation [J]. Applied Physics Letters, 2006, 89(22): 2239031-2239033.
[16] GENCER N G, KUZUOGLU M, DER Y Z. Electrical impedance tomography using induced currents [J] . IEEE Transactions on Medical Imaging, 1994, 13(2): 338-350.
[17] GENCER N G, DER Y Z, WILLIAMSON S J. Electrical impedance tomography: inducedcurrent imaging achieved with a multiple coil system [J] . IEEE Transactions on Biomedical Engineering, 1996, 43(2): 139-149.
[18] LIU Y, ZHU S A, HE B. Induced current magnetic resonance electrical impedance tomography of brain tissues based on Jsubstitution algorithm: a simulation study [J]. Physics in Medicine and Biology, 2009, 54(14): 4561-4573.
[19] KWON O, WOO E J, YOON J R, et al. Magnetic resonance electrical impedance tomography (MREIT): simulation study of Jsubstitution algorithm [J]. IEEE Transactions on Biomedical Engineering, 2002, 49(2): 160-167. |