Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Traffic Engineering     
Test and application research advance on foundation reinforcement by electro-osmosis method
ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download:   PDF(1858KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For fine grained soil with low permeability and high plasticity, the conventional drainage consolidation methods work inefficiently in foundation reinforcement. Electro-osmosis method has advantage of short duration and easy installation. Relevant research is emerging and some has realized primary engineering application. Researches on foundation reinforcement by electro-osmosis method were summarized to further understand the electro-osmosis reinforcement mechanism and provide references for project design. This review mainly includes the relation between soil properties and electro-osmosis reinforcement mechanism, the effect of test methods and control factors on electro-osmosis, the electro-osmosis method combined with other treatment methods. Problems occurred in researches are as follows: how to determine the practice code and guideline of control factors, how to consider electro-osmosis mechanism before experiment design, how to enhance single-factor tests, etc. In addition, the research directions for future are suggested, such as to develop new testing technology, to improve computing method and electro-osmosis treatment of advanced materials.



Published: 11 June 2017
CLC:  TU 472  
Cite this article:

ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min. Test and application research advance on foundation reinforcement by electro-osmosis method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1064-1073.


电渗法加固地基试验及应用研究进展

对于高塑性、低渗透性的细颗粒土,常规的排水固结法加固效果不佳,电渗法具有工期短、设备安装方便等优点,相关研究逐渐兴起并得到了初步工程推广.为进一步理解电渗法加固机理并为工程设计提供参考,综述电渗法加固地基方面的研究工作,包括电渗加固机理与土体性质的关系、试验研究方法和控制因素对电渗的影响、电渗联合其他方式处理等主要成果.研究中的问题包括如何确定控制因素实施规范和准则、如何先考虑机理后设计试验以及如何强化单因素试验等.提出未来的研究方向:开发新测试技术、改进计算方法以及新材料的电渗处理.

参考文献(References):
[1] 龚晓南.土力学[M].北京: 中国建筑工业出版社, 2002: 4-12.
[2] CASAGRANDE I L. Electro-osmosis in soils [J]. Géotechnique, 1949, 1(3): 159-177.
[3] CASAGRANDE I L. Stabilization of soils by means of electroosmotic state-of-art [J]. Journal of Boston Society of Civil Engineering, ASCE, 1983, 69(3): 255-302.
[4] BJERRUM L, MOUM J, EIDE O. Application of electroosmosis to a foundation problem in a norwegian quick clay [J]. Géotechnique, 1967, 17(3): 214-235.
[5] 曾国熙,高有潮.软粘土的电化学加固(初步试验结果)[J].浙江大学学报:工学版, 1956, 8(2): 12-35.
ZENG Guo-xi, GAO You-chao. Electrochemical hardening of soft clay (primary test result) [J]. Journal of Zhejiang University: Engineering Science, 1956, 8(2):12-35.
[6] LO K Y, HO K S, INCULET I I. Field test of electroosmotic strengthening of soft sensitive clay [J]. Canadian Geotechnical Journal, 1991, 28(1): 74-83.
[7] XUE Z, TANG X, YANG Q, et al. Comparison ofelectro-osmosis experiments on marine sludge with different electrode materials [J]. Drying Technology, 2015, 33(8): 986-995.
[8] MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electroosmosis [J]. Ground Improvement, 2001, 5(1): 3-11.
[9] ZHUANG Y, WANG Z. Interface electric resistance of electroosmotic consolidation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1617-1621.
[10] GRUNDL T, REESE C. Laboratory study of electrokinetic effects in complex natural sediments [J]. Journal of Hazardous Materials, 1997, 55(1): 187-201.
[11] KALUMBA D, GLENDINNING S, ROGERS C D F, et al. Dewatering of tunneling slurry waste using electrokinetic geosynthetics [J]. Journal of Environmental Engineering, 2009, 135(11): 1227-1236.
[12] 刘飞禹,宓炜,王军,等.逐级加载电压对电渗加固吹填土的影响[J].岩石力学与工程学报,2014, 33(12): 2582-2591.
LIU Feiyu, MI Wei, WANG Jun, et al. Influence of applying stepped voltage in electroosmotic reinforcement of dredger fill [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2582-2591.
[13] WAN T Y, MITCHELL J K. Electroosmotic consolidation of soils [J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): 473-491.
[14] 申春妮,方祥位,王和文,等.吸力、含水率和干密度对重塑非饱和土抗剪强度影响研究[J].岩土力学,2009,30(5):1347-1351.
SHEN Chun-ni, FANG Xiang-wei, WANG He-wen, et al. Research on effects of suction, water content and dry density on shear strength of remolded unsaturated soils [J]. Rock and Soil Mechanics, 2009, 30(5):1347-1351.
[15] MICIC S, SHANG J Q, LO K Y, et al. Electrokinetic strengthening of a marine sediment using intermittent current [J]. Canadian Geotechnical Journal, 2001,38(2): 287-302.
[16] GLENDINNING S, JONES C, PUGH R. Reinforced soil using cohesive fill and electrokinetic geosynthetics [J]. International Journal of Geomechanics, 2005,5(2): 138-146.
[17] FOURIE A, JOHNS D, JONES C F. Dewatering of mine tailings using electrokinetic geosynthetics [J]. Canadian Geotechnical Journal, 2007, 44(2): 160-172.
[18] GRAY D H, MITCHELL J K. Fundamental aspects of electro-osmosis in soils [J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(6):209-236.
[19] FENG Y, ZHAN L T, CHEN Y M, et al. Laboratroy study on electrokinetic dewatering of sewage sludge [C] ∥ Proceedings of the International Symposium on Geoenvironmental Engineering. Berlin: Springer, 2010: 662-665.
[20] 陶燕丽.不同电极电渗过程比较及基于电导率电渗排水量计算方法[D].杭州:浙江大学,2015.
TAO Yan-li. Electro-osmotic process under differentelectrode materials and a novel method for discharge calculation based on electrical conductivity [D]. Hangzhou: Zhejiang University, 2015.
[21] JONES C J F P, LAMONT-BLACK J, GLENDINNING S. Electrokinetic geosynthetics in hydraulic applications [J]. Geotextiles and Geomembranes, 2011, 29(4): 381-390.
[22] SHANG J Q. Zeta potential and electroosmotic permeability of clay soils [J]. Canadian Geotechnical Journal, 1997, 34(4): 627-631.
[23] JAYASEKERA S. Electroosmotic and hydraulic flow rates through kaolinite and bentonite clays [J]. Australian Geomechanics, 2004, 39(2): 79-86.
[24] EYKHOLT G R, DANIEL D E. Impact of system chemistry on electroosmosis in contaminated soil [J]. Journal of Geotechnical Engineering, 1994, 120(5): 797815.
[25] VANE L M, ZANG G M. Effect of aqueous phase properties on clay particle zeta potential and electroosmotic permeability: implications for electrokinetic soil remediation processes [J]. Journal of Hazardous Materials, 1997, 55(1): 1-22.
[26] MCCARTER W. The electrical resistivity characteristics of compacted clays [J]. Géotechnique, 1984,34(2): 263-267.
[27] 吴辉,胡黎明.考虑电导率变化的电渗固结模型[J].岩土工程学报,2013,35(4): 734-738.
WU Hui, HU Li-ming. Numerical simulation of electro-osmosis consolidation considering variation of electrical conductivity [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 734-738.
[28] LEE Y, CHOI J, LEE H, et al. Effect of electrode materials on electrokinetic reduction of soil salinity [J]. Separation Science and Technology, 2012, 47(1): 22-29.
[29] JEYAKANTHAN V, GNANENDRAN C, LO S. Laboratory assessment of electro-osmotic stabilization of soft clay [J]. Canadian Geotechnical Journal, 2011,48(12): 1788-1802.
[30] KANIRAJ S, YEE J. Electro-osmotic consolidation experiments on an organic soil [J]. Geotechnical and Geological Engineering, 2011, 29(4): 505-518.
[31] JAYASEKERA S, HALL S. Modification of the properties of salt affected soils using electrochemical treatments [J]. Geotechnical and Geological Engineering, 2007, 25(1): 1-10.
[32] GUO Y, SHANG J Q. A study on electrokinetic dewatering of oil sands tailings [J]. Environmental Geotechnics, 2014, 1(2): 121-134.
[33] 陶燕丽,周建,龚晓南,等.铁和铜电极对电渗效果影响的对比试验研究[J].岩土工程学报,2013,35(2):388-394.
TAO Yan-li, ZHOU Jian, GONG Xiao-nan, et al. Comparative experiment study of the influence of Ferrum and Cuprum electrode on electroosmosis effects [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 388-394.
[34] 陈卓,周建,温晓贵,等.电极反转对电渗加固效果的试验研究[J].浙江大学学报:工学版,2013, 47(9):1579-1584.
CHEN Zhuo, ZHOU Jian, WEN Xiao-gui, et al. Experimental research on effect of polarity reversal toelectroosmosis [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(9): 1579-1584.
[35] 符洪涛,王军,蔡袁强,等.低能量强夯电渗法联合加固软黏土地基试验研究[J].岩石力学与工程学报,2015, 34(3): 612-620.
FU Hong-tao, WANG Jun, CAI Yuan-qiang, et al. Experiment study of combined application of electroosmosis and lowenergy dynamic compaction in soft ground reinforcement [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 612-620.
[36] HAMIR R, JONES C, CLARKE B. Electrically conductive geosynthetics for consolidation and reinforced soil [J]. Geotextiles and Geomembranes, 2001, 19(8): 455482.
[37] HALL J, GLENDINNING S, LAMONTBLACK J, et al. Dewatering of waste slurries using electrokinetic geosynthetic (EKG) filter bags [C] ∥ 4th European Geosynthetics Conference. Edinburgh: [s. n.], 2008: 321.
[38] CHEW S, KARUNARATNE G, KUMA V, et al. A field trial for soft clay consolidation using electric vertical drains [J]. Geotextiles and Geomembranes, 2004, 22(1): 1735.
[39] 李一雯,周建,龚晓南,等.电极布置形式对电渗效果影响的试验研究[J].岩土力学,2013,34(7): 1972-1978.
LI Yi-wen, ZHOU Jian, GONG Xiao-nan, et al. Experimental research on influence of electrode array on electroosmotic effect [J]. Rock and Soil Mechanics, 2013, 34(7): 1972-1978.
[40] KANIRAJ S, HUONG H, YEE J. Electro-osmotic consolidation studies on peat and clayey silt using electric vertical drain [J]. Geotechnical and Geological Engineering, 2011, 29(3): 277-295.
[41] LI J S, XUE Q, WANG P, et al. Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay [J]. Applied Clay Science, 2015, 105: 192-199.
[42] WU H, HU L. Microfabric change of electro-osmotic stabilized bentonite [J]. Applied Clay Science, 2014, 101: 503-509.
[43] MICIC S, SHANG J Q, LO K Y. Electrocementation of a marine clay induced by electrokinetics [J]. International Journal of Offshore and Polar Engineering, 2003, 13(4): 308-315.
[44] CHIEN S C, OU C Y. A novel technique of harmonic waves applied electro-osmotic chemical treatment for soil improvement [J]. Applied Clay Science, 2011,52(3): 235-244.
[45] 龚晓南,焦丹.间歇通电下软黏土电渗固结性状试验分析[J].中南大学学报:自然科学版,2011, 42(6):1725-1730.
GONG Xiao-nan, JIAO Dan. Experimental study of electro-osmotic consolidation of soft clay under intermittent current condition [J]. Journal of Central South University: Science and Technology, 2011, 42(6): 1725-1730.
[46] REDDY K R, SAICHEK R E. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application [J]. Journal of Environmental Science and Health: Part A, 2004, 39(5): 1189-1212.
[47] SHANG J Q, LO K Y, INCULET I. Polarization and conduction of clay-water-electrolyte systems [J]. Journal of Geotechnical Engineering, 1995, 121(3): 243-248.
[48] YOSHIDA H, KITAJYO K, NAKAYAMA M. Electroosmotic dewatering under AC electric field with periodic reversals of electrode polarity [J]. Drying Technology, 1999, 17(3): 539-554.
[49] ALSHAWABKEH A N, GALE R J, OZSU-ACAR E, et al. Optimization of 2-D electrode configuration for electrokinetic remediation [J]. Journal of Soil Contamination, 1999, 8(6): 617-635.
[50] KIM W, PARK G, KIM D, et al. In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: influence of electrode configuration [J]. Electrochimica Acta, 2012, 86: 89-95.
[51] TAO Y, ZHOU J, GONG X, et al. Electro-osmotic dehydration of Hangzhou sludge with selected electrode arrangements [J]. Drying Technology, 2016, 34(1): 66-75.
[52] EL MAADDAWY T A, SOUDKI K A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete [J]. Journal of Materials in Civil Engineering, 2003, 15(1): 41-47.
[53] ZHOU J, TAO Y L, XU C J, et al. Electro-osmotic strengthening of silts based on selected electrode materials [J]. Soils and Foundations, 2015, 55(5):1171-1180.
[54] WU H, HU L, ZHANG G. Effects of electro-osmosis on the physical and chemical properties of bentonite [J]. Journal of Materials in Civil Engineering, 2016,28(8): 06016010.
[55] GLENDINNING S, LAMONT-BLACK J, JONESC J. Treatment of sewage sludge using electrokinetic geosynthetics [J]. Journal of Hazardous Materials, 2007, 139(3): 491-499.
[56] LAMONTBLACK J, JONES C, ALDER D. Electrokinetic strengthening of slopes-case history [J]. Geotextiles and Geomembranes, 2016, 44(3): 319-331.
[57] 胡俞晨,王钊,庄艳峰.电动土工合成材料加固软土地基实验研究[J].岩土工程学报,2005,27(5): 582-586.
HU Yu-chen, WANG Zhao, ZHUANG Yan-feng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 582-586.
[58] 孙召花,高明军,刘志浩,等.导电塑料排水板加固吹填土现场试验[J].河海大学学报:自然科学版,2015,43(3): 255-260.
SUN Zhao-hua, GAO Ming-jun, LIU Zhi-hao, et al. Field test on consolidation of dredger fill using electric vertical drains [J]. Journal of Hohai University: Natural Sciences, 2015, 43(3): 255-260.
[59] LEFEBVRE G, BURNOTTE F. Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes [J]. Canadian Geotechnical Journal, 2002, 39(2): 399-408.
[60] SHEN Z, CHEN X, JIA J, et al. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes [J]. Environmental Pollution, 2007, 150(2): 193-199.
[61] 刘飞禹,张乐,王军,等.阳极跟进作用下软黏土电渗固结室内试验研究[J].土木建筑与环境工程,2014,36(1): 52-58.
LIU Fei-yu, ZHANG Le, WANG Jun, et al. Experimental analysis of the electro-osmosis consolidation of soft clay under anode follow-up [J]. Journal of Civil, Architectural and Environmental Engineering, 2014,36(1): 52-58.
[62] 王柳江,刘斯宏,汪俊波,等.真空预压联合电渗法处理高含水率软土模型试验[J].河海大学学报:自然科学版,2011,39(6): 671-675.
WANG Liu-jiang, LIU Si-hong, WANG Jun-bo, et al. Model test for high-water-content soft soil treatment under vacuum preloading in combination with electroosmosis [J]. Journal of Hohai University: Natural Sciences, 2011, 39(6): 671-675.
[63] WANG J, MA J, LIU F, et al. Experimental study on the improvement of marine clay slurry by electroosmosisvacuum preloading [J]. Geotextiles and Geomembranes, 2016, 44(4): 615-622.
[64] SUN Z, GAO M, YU X. Vacuum preloading combined with electro-osmotic dewatering of dredger fillusing electric vertical drains [J]. Drying Technology, 2015, 33(7): 847-853.
[65] 胡平川,周建,温晓贵,等.电渗-堆载联合气压劈裂的室内模型试验[J].浙江大学学报:工学版, 2015,49(8): 1434-1440.
HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, et al. Laboratory model experiment of electroosmosis combined with loading and pneumatic fracturing [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(8): 1434-1440.
[66] OZKAN S, GALE R, SEALS R. Electrokinetic stabilization of kaolinite by injection of Al and PO34 ions [J]. Ground Improvement, 1999, 3(4): 135-144.
[67] ALSHAWABKEH A N, SHEAHAN T C, WU X. Coupling of electrochemical and mechanical processes in soils under DC fields [J]. Mechanics of Materials, 2004, 36(5): 453-465.
[68] OU C Y, CHIEN S C, WANG Y G. On the enhancement of electroosmotic soil improvement by the injection of saline solutions [J]. Applied Clay Science, 2009, 44(1): 130-136.
[69] CHIEN S C, OU C Y, WANG M K. Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil [J]. Applied Clay Science, 2009, 44(3): 218-224.
[70] OU C Y, CHIEN S C, LIU R H. A study of the effects of electrode spacing on the cementation region for electro-osmotic chemical treatment [J]. Applied Clay Science, 2015, 104: 168-181.
[71] DUSSOUR C, FAVORITI P, VOROBIEV E. Influence of chemical additives upon both filtration and electroosmotic dehydration of a kaolin suspension [J]. Separation Science and Technology, 2000, 35(8): 1179-1193.
[72] YEUNG A T, HSU C. Electrokinetic remediation of cadmium-contaminated clay [J]. Journal of Environmental Engineering, 2005, 131(2): 298-304.
[73] KHODADOUST A P, REDDY K R, NARLA O. Cyclodextrin-enhanced electrokinetic remediation of soils contaminated with 2, 4-dinitrotoluene [J]. Journal of Environmental Engineering, 2006, 132(9): 1043-1050.

[1] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(12): 2364-2376.
[2] ZANG Jun chao, ZHENG Ling wei, XIE Xin yu, CAO Li wen, LI Zhuo ming. Electro-osmosis reinforcement experiment of  life source polluted soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 245-254.
[3] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1849-1854.
[4] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 813-821.
[5] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2142-2150.
[6] LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1389-1394.
[7] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1976-1982.
[8] XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1941-1946.
[9] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1345-1352.
[10] TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Dynamic wind load combination of tall buildings based on Copula functions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1370-1375.
[11] LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 843-849.
[12] YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu. Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 109-115.
[13] LIN Wei, LOU Wen-juan, SHENTU Tuan-bing, HUANG Ming-feng. Peak factor of non-Gaussian pressure process on complex
super-tall building
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 691-697.
[14] XUE Wen, JIN Wei-liang, YOKOTA Hiroshi. Chloride penetrating under co-effects of initial curing and
exposure conditions
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1416-1422.
[15] CHEN Gui-feng, MA Xiao-wei, WU Jian-hai, MA Qiao-yun, XUE Jing-jing, HAO Qiu-yan. Effect of rapid thermal process on oxygen precipitates behavior in
silicon irradiated by high energy particles
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 928-933.