Please wait a minute...
J4  2013, Vol. 47 Issue (1): 109-115    DOI: 10.3785/j.issn.1008-973X.2013.01.016
    
Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow
YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A direct-forcing fictitious domain method was employed to perform fully-resolved numerical simulations of turbulent channel flow laden with large neutrally buoyant particles. The effects of the particles on the turbulence  at the friction Reynolds number of 180 were investigated. The particle volume fractions are 0.79% and 2.36%, respectively. Results show that the presence of particles decreases the maximum rms of streamwise velocity fluctuation near wall via weakening the large-scale streamwise vortices, and on the other hand increases the rms of transverse and spanwise fluctuating velocities in vicinity of the wall via inducing smallerscale vortices. The probability density function (PDF) of the fluctuating velocities near wall was significantly modified by the addition of the particles: firstly, the skewness of the PDF of the streamwise and transverse velocities was reduced, and secondly, the probability for large fluctuating velocities was decreased in the streamwise direction but increased in other two directions. However, the effect of the particles on the velocity PDF normalized with the variance (i.e. rms velocity) is small.



Published: 01 January 2013
CLC:  TU 411  
  TU 472.5  
Cite this article:

YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu. Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow. J4, 2013, 47(1): 109-115.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.01.016     OR     http://www.zjujournals.com/eng/Y2013/V47/I1/109


中性悬浮大颗粒对湍槽流影响的数值研究

采用虚拟区域方法对含有中性悬浮大颗粒的湍槽流进行双重直接数值模拟,研究当摩擦雷诺数为180、颗粒体积分数分别为079%和236%时颗粒对湍流场的影响.结果表明:颗粒的存在削弱了大尺度准流向涡结构,导致近壁处流向脉动速度强度的削弱,且诱导出较小尺度的涡结构,导致近壁处横向和展向脉动速度的增强.颗粒的存在对近壁区脉动速度概率密度分布的影响显著:降低了流向和横向脉动速度概率分布的倾斜度;减小了流向出现大速度脉动的概率,增加了横向和展向出现大速度脉动的概率.对于以方差归一化的脉动速度概率分布,颗粒的影响很小.

[1] GORE R A, CROWE C T. Effect of particle size on modulating turbulent intensity [J]. International Journal of Multiphase Flow, 1989, 15(2): 279-285.
[2] HETSRONI G. Particle turbulence interaction [J]. International Journal of Multiphase Flow, 1989, 15(5): 735-746.
[3] ZISSELMAR R, MOLERUS O. Investigation of solid-liquid pipe flow with regard to turbulence modification [J]. Chemical Engineering Journal, 1979, 18(3): 233-239.
[4] RASHIDI M, HETSRONI G, BANERJEE S. Particle turbulence interaction in a boundary layer [J]. International Journal of Multiphase Flow, 1990, 16(6): 935-949.
[5] KAFTORI D, HETSRONI G, BANERJEE S. The effect of particles on wall turbulence [J]. International Journal of Multiphase Flow, 1998, 24(3): 359-386.
[6] PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence [J]. Physics of Fluids, 1996, 8(10): 2733-2755.
[7] PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall turbulence [J]. Physics of Fluids, 1997, 9(12): 3786-3807.
[8] KAJISHIMA T, TAKIGUCHI S, HAMASAKI H, et al. Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding [J]. JSME International Journal Series B: Fluids and Thermal Engineering, 2001, 44(4): 526-535.
[9] UHLMANN M. Interfaceresolved direct numerical simulation of vertical particulate channel flow in the turbulent regime [J]. Physics of Fluids, 2008, 20(5): 053305.
[10] TEN C A, DERKSEN J J, PORTELA L M, et al. Fully resolved simulations of colliding mono-dispersed spheres in forced isotropic turbulence [J]. Journal of Fluid Mechanics, 2004, 519: 233-271.
[11] LUCCI F, FERRANTE A, ELGHOBASHII S. Modulation of isotropic turbulence by particles of Taylor length-scale size [J]. Journal of Fluid Mechanics, 2010, 650: 555.
[12] WU Teng-hu, SHAO Xue-ming, YU Zhao-sheng. Fully resolved numerical simulation of turbulent pipe flows laden with large neutrally-buoyant particles [J]. Journal of Hydrodynamics, 2010, 23(1): 21-25.
[13] SHAO Xue-ming, WU Teng-hu, YU Zhao-sheng. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number [J]. Journal of Fluid Mechanics, 2012, 693:319-344.
\[14\] 吴腾虎.管道内颗粒悬浮流中大颗粒和湍流相互作用的直接数值模拟研究\[D\].杭州:浙江大学,2011.
WU Teng-hu. Fully resolved direct numerical simulations of interactions between big particles and turbulence in particle-laden pipe and channel flows \[D\]. Hangzhou:Zhejiang University, 2011.
[15] YU Zhao-sheng, SHAO Xue-ming. A direct-forcing fictitious domain method for particulate flows [J]. Journal of Computational Physics, 2007, 227(1): 292-314.
[16] YU Zhao-sheng, SHAO Xueming, WACHS A. A fictitious domain method for particulate flows with heat transfer [J]. Journal of Computational Physics, 2006, 217(2): 424-452.
[17] GLOWINSKI R, PAN T W, HESLA T I, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows [J]. International Journal of Multiphase Flow, 1999, 25(5): 755-794.
[18] SUN Bo, YU Zhao-sheng, SHAO Xue-ming. Inertial migration of a circular particle in nonoscillatory and oscillatory pressuredriven flows at moderately high Reynolds numbers [J]. Fluid Dynamics Research, 2009, 41(5): 055501.
[19] SHAO Xue-ming, YU Zhao-sheng, SUN Bo. Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers [J]. Physics of Fluids, 2008, 20(10): 103307.
[20] YU Zhao-sheng, SHAO Xue-ming. Direct numerical simulation of particulate flows with a fictitious domain method [J]. International Journal of Multiphase Flow, 2010, 36(2): 127-134.
[21] KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics, 1987, 177: 133-166.
[22] DINAVAHI S P G, BREUER K S, SIROVICH L. Universality of probability density functions in turbulent channel flow [J]. Physics of Fluids, 1995, 7(5): 1122-1129.
[23] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353-396.

[1] LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, Du Li-li. Experimental investigation of seepage barrier effect by air-inflation in soil[J]. J4, 2014, 48(2): 236-241.
[2] KE Han,WANG Wen-fang, WEI Chang-chun, CHEN Yun-min, ZHAN Liang-tong. Experimental study on saturated hydraulic conductivity of MSW under different conditions[J]. J4, 2013, 47(7): 1164-1170.
[3] WANG Lin-tao, GONG Guo-fang, SHI Hu, LIU Huai-yin. Ground surface deformation control based on chamber
pressure direct feedback
[J]. J4, 2012, 46(7): 1182-1188.
[4] LIU Yong-li, SUN Hong-yue, YU Yang, ZHAN Wei,SHANG Yue-quan. Determining landslide thrust on anti-sliding pile by
BOTDR monitoring technology
[J]. J4, 2012, 46(5): 798-803.
[5] LIN Wei, LOU Wen-juan, SHENTU Tuan-bing, HUANG Ming-feng. Peak factor of non-Gaussian pressure process on complex
super-tall building
[J]. J4, 2012, 46(4): 691-697.
[6] LIU Yong-li, SUN Hong-yue, YU Yang, ZHAN Wei, SHANG Yue-quan. BOTDR monitoring analysis of anti-sliding pile internal force[J]. J4, 2012, 46(2): 243-249.
[7] XU Ri-qing, ZHANG Jun, ZHU Jian-feng, WANG Xing-chen. Modified Duncan-Chang model considering disturbance[J]. J4, 2012, 46(1): 1-7.
[8] ZHOU Jian, ZHENG Hong-bin, WEN Xiao-gui, GUAN Lin-bo, DENG Yi-liang. Deformation of intact soft clay under principal stress rotation
with effect of intermediate principal stress
[J]. J4, 2011, 45(12): 2134-2141.
[9] XUE Wen, JIN Wei-liang, YOKOTA Hiroshi. Chloride penetrating under co-effects of initial curing and
exposure conditions
[J]. J4, 2011, 45(8): 1416-1422.
[10] CHEN Gui-feng, MA Xiao-wei, WU Jian-hai, MA Qiao-yun, XUE Jing-jing, HAO Qiu-yan. Effect of rapid thermal process on oxygen precipitates behavior in
silicon irradiated by high energy particles
[J]. J4, 2011, 45(5): 928-933.
[11] CHEN Guo-hong, XIE Kang-he, CHENG Yong-feng, XU Yan. Analytical solution for consolidation of sand-drained ground considering
variation of permeability coefficient in smeared zone
[J]. J4, 2011, 45(4): 665-670.
[12] WANG Yan, LI Hai-feng, XU Xi-ping. The light-pipe illumination system design for double-lamp projector[J]. J4, 2011, 45(2): 382-386.
[13] SHI Hu, GONG Guo-fang, YANG Hua-yong, WANG Hui. Determination of thrust force for shield tunneling machine[J]. J4, 2011, 45(1): 126-131.
[14] SU Feng, JIANG Ye, CA Yong-Chang. Finite element analysis of steel beam and concretefilled circular column joints bearing capacity[J]. J4, 2010, 44(10): 1876-1882.
[15] SHU Dao-Jian. Unloading effect and rapture zone distribution of columnar joints cavern[J]. J4, 2010, 44(10): 1967-1973.