Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Energy Engineering     
Impedance matching of traveling-wave thermoacoustic electric generating system
ZHANG Jie, SUN Da-ming, WANG Kai, LUO Kai, ZHANG Ning, ZOU Jiang
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1301KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
The output characteristics of a thermoacoustic engine and the input characteristics of linear alternators were calculated based on the decoupling method and theoretical analysis. Moreover, the performance of the traveling-wave thermoacoustic electric generator was studied theoretically and experimentally. Simulation results show that the engine output power and thermal-to-acoustic efficiency are high when the real part of output impedance is in the range of 1.0×107 to 2.0×107 Pa·s/m3, and the imaginary part is under magnitude order of 106 Pa·s/m3; the high-efficiency operating frequency is 65.5 Hz. The performance of the linear alternator is remarkably influenced by working frequency, load resistance, etc. The best working frequency for the alternator is 72 Hz and the optimal range of load resistance is 80 to 200 Ω. The electric generating system can attain 520 W in power and 24.4% in thermal-to-electric efficiency theoretically when the mean pressure is 3.16 MPa and the heating temperature is 550 ℃ in simulation. The experiment gives a maximum power of 481 W and a highest thermal-to-electric efficiency of 15.1%. The theoretical and experimental results are in coincidence basically, which proves the correctness of the physical model and the good impedance matching of the thermoacoustic electric generating system.


Published: 01 March 2017
CLC:  TM 61  
Cite this article:

ZHANG Jie, SUN Da-ming, WANG Kai, LUO Kai, ZHANG Ning, ZOU Jiang. Impedance matching of traveling-wave thermoacoustic electric generating system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 494-499.


行波热声发电系统的阻抗匹配

通过系统解耦的方法和理论分析,计算行波热声发动机输出特性和直线发电机的输入特性,同时开展行波热声发电机性能的理论和实验研究.模拟发现,当发动机声功输出处阻抗实部为1.0×107 ~2.0×107 Pa·s/m3、阻抗虚部在106 Pa·s/m3量级内时,发动机输出声功率及热声效率高,发动机高效工作的频率约为65.5 Hz;直线电机性能受工作频率、外接负载等因素的影响,最佳工作频率约为72 Hz,最优外接负载为80~200 Ω;在3.16 MPa的充气压力和550 ℃的加热温度下,该发电系统的理论发电功率达到了520 W以上,最高热电效率达到了24.4%;实验中,最高电功率达到了481 W,最高热电效率达到了15.1%.数值模拟结果与实验结果基本吻合,验证了物理模型的正确性,说明该热声发电系统实现了良好的阻抗匹配.

[1] BACKHAUS S, TWARD E, PETACH M. Traveling-wave thermoacoustic electric generator [J]. Applied Physics Letters, 2004, 85(6): 1085-1087.
[2] WU Z H, ZHANG L M, DAI W, et al. Investigation on a 1 kW traveling-wave thermoacoustic electrical generator [J]. Applied Energy, 2014, 124: 140-147.
[3] WU Z H, YU G Y, ZHANG L M, et al. Development of a 3 kW double-acting thermoacoustic Stirling electric generator [J]. Applied Energy, 2014, 136: 866-872.
[4] BI T J, WU Z H, ZHANG L M, et al. Development of a5 kW traveling-wave thermoacoustic electric generator [J]. Applied Energy, 2017,185: 1355-1361.
[5] SUN D M, WANG K, ZHANG X J, et al. A traveling-wave thermoacoustic electric generator with a variableelectric RC load [J]. Applied energy, 2013, 106:377-382.
[6] WANG K, SUN D M, ZHANG J, et al. Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator [J]. Applied Energy, 2015, 160: 853-862.
[7] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 1: formulation of the problem [J]. Cryogenics, 1995, 35(1): 15-19.
[8] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 2: isothermal wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1):21-26.
[9] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 3: adiabatic wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1): 27-29.
[10] SWIFT G W, GARRETT S L. Thermoacoustics: aunifying perspective for some engines and refrigerators [J]. The Journal of the Acoustical Society of America, 2003, 113(5): 2379-2381.
[11] 吴张华,罗二仓,戴巍.热声发电之直线发电机的理论研究[J].太阳能学报,2008,29(4): 493-497.
WU Zhang-hua, LUO Er-cang, DAI Wei. Theoretical investigation on linear alternator in thermoacoustic power generation system [J]. Acta Energiae Solaris Sinica, 2008, 29(4): 493-497.
[1] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(3): 594-600.
[2] Qi CHEN,Dan-yang LI,Hong-wei LIU,Yong-gang LIN,Wei LI,Jing-long DING. Load simulation technology for ground test system of wind turbine drive chain[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(2): 299-306.
[3] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(11): 2196-2203.
[4] Guang-zhu WANG,Jian-hong CHEN,Xi-liang HONG,Xiao-rong WANG,Qiang-feng CHEN,De-ren SHENG,Wei LI. Exergoenvironmental evaluation for combined cycle power generation system based on life cycle assessment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(5): 972-980.
[5] LI Hong kun, CHEN Jian hong, SHENG De ren, LI Wei. Thermoeconomic analysis and performance evaluation of gas steam combined cycle power plant based on H&S model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 116-122.
[6] YIN Xiu-xing, GU Ya-jing, LIN Yong-gang, YE Hang-ye, LI Wei. Loading control method of reproducing 5 DOF loads to wind turbine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1470-1477.
[7] WU Yue, ZHANG Guo-yue, YANG Jie, QI Dong-lian. SSR-MDF control method for new energy converter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1516-1521.
[8] YIN Xiu-xing, LIN Yong-gang, LI Wei, GU ya-jing, LIU Hong-wei. Control and model identification of an electro-hydraulic digital pitch system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 777-783.
[9] YIN Xiu-xing, LIN Yong-gang, LI Wei, GU Ya-jing, LOU Shan, LIU Hong-wei. Study on variable pitch-controlled technology based on electro-hydraulic planetary bevel gear motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 206-213.
[10] WANG De-ming, WANG Li,ZHANG Guang-ming. Short-term wind speed forecast model for wind farms based on
genetic BP neural network
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 837-841.
[11] YAO Hua, SHENG De-ren, LIN Zhang-xin, SONG Si-yuan,CHEN Jian-hong, LI Wei. Thermodynamic performance analysis of associated energy
 combined cycle system in ironmaking process
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 2008-2013.