Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 483-490    DOI: 10.3785/j.issn.1008-973X.2021.03.008
土木与交通工程     
基于Boosting-决策树C5.0的岩体结构面粗糙度预测
苗发盛(),吴益平*(),李麟玮,廖康,薛阳
中国地质大学 工程学院,湖北 武汉 430074
Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0
Fa-sheng MIAO(),Yi-ping WU*(),Lin-wei LI,Kang LIAO,Yang XUE
Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
 全文: PDF(1168 KB)   HTML
摘要:

针对目前岩体结构面粗糙度系数(JRC)定量评价模型构建困难且预测精度较低的问题,搜集包括10条Barton标准剖面线在内的112条岩体结构面JRC,统计各剖面线的8种形态参数. 采用主成分分析降维处理形态参数,共得到5个主成分. 以前102组剖面线参数作为训练样本,采用Boosting-决策树C5.0算法构建模型,以10条Barton标准剖面线验证模型精度. 对比决策树C5.0模型、CHAID决策树模型、支持向量机(SVM)模型、类神经网络模型,分析各模型预测效果. 结果表明,Boosting-决策树C5.0模型的预测结果平均误差、均方根误差均最小. 建立的显式JRC预测模型,包含8层共计68节点的判别阈值.

关键词: 岩体结构面粗糙度系数决策树C5.0形态参数预测    
Abstract:

The JRC values of 112 rock joints were collected, including 10 Barton standard profiles, and 8 morphological parameters of each profile were calculated in view of the difficulty and low accuracy for prediction of the current joint roughness coefficient (JRC) quantitative evaluation model. Principal component analysis was used to reduce the dimension of these morphological parameters, and 5 principal components were obtained. 102 groups of profile data were used as training samples, the Boosting-decision tree (DT) C5.0 algorithm was used to build the training model, and Barton 10 standard profiles were used for model verification. The DT C5.0 model, CHAID DT model, support vector machine (SVM) model, and artificial neural network models were selected to verify the prediction accuracy of each model. Results showed that the average error and root mean square error of the Boosting-DT C5.0 model were the least. Established explicit JRC prediction model included 8 layers and 68 nodes.

Key words: rock joints    roughness coefficient    decision tree C5.0    morphological parameter    prediction
收稿日期: 2020-02-15 出版日期: 2021-04-25
CLC:  P 642  
基金资助: 国家自然科学基金资助项目(42007267,41977244);国家重点研发计划资助项目(2017YFC1501301)
通讯作者: 吴益平     E-mail: fsmiao@cug.edu.cn;ypwu@cug.edu.cn
作者简介: 苗发盛(1989—),男,副教授,从事岩土稳定性评价研究. orcid.org/0000-0001-7760-779X. E-mail: fsmiao@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
苗发盛
吴益平
李麟玮
廖康
薛阳

引用本文:

苗发盛,吴益平,李麟玮,廖康,薛阳. 基于Boosting-决策树C5.0的岩体结构面粗糙度预测[J]. 浙江大学学报(工学版), 2021, 55(3): 483-490.

Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.008        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/483

图 1  参考坐标系示意图
图 2  岩体结构面粗糙度指标及各形貌参数
图 3  决策树模型训练预测流程图
图 4  决策树C5.0模型图
图 5  Boosting-DT C5.0模型训练及预测结果
图 6  各模型预测结果对比图
模型 R2 /% E1 /% Ea MSE RMSE
Boosting-DT C5.0 95.19 100 0.06 0.186 0.432
DT C5.0 92.27 100 0.51 0.481 0.694
CHAID DT 93.62 100 0.24 0.328 0.573
SVM 94.10 100 0.28 0.280 0.529
ANN 89.94 75 0.38 0.815 0.903
表 1  各模型预测结果对比
1 BARTON N Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7 (4): 287- 332
doi: 10.1016/0013-7952(73)90013-6
2 BARTON N, CHOUBEY V The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10 (1): 1- 54
3 BARTON N Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15 (6): 319- 368
doi: 10.1016/0148-9062(78)91472-9
4 PATTON F D. Multiple modes of shear failure in rock [C]// 1st ISRM Congress. Lisbon: ISRM, 1966.
5 MYERS N O Characterization of surface roughness[J]. Wear, 1962, 5 (3): 182- 189
doi: 10.1016/0043-1648(62)90002-9
6 TSE R, CRUDEN D M Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1979, 16 (5): 303- 307
doi: 10.1016/0148-9062(79)90241-9
7 YU X B, VAYSSADE B Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28 (4): 333- 336
doi: 10.1016/0148-9062(91)90598-G
8 YANG Z Y, LO S C, DI C C Reasessing the joint roughness coefficient (JRC) estimation using Z2[J]. Rock Mechanics and Rock Engineering, 2001, 34 (3): 243- 251
doi: 10.1007/s006030170012
9 LI Y, XU Q, AYDIN A Uncertainties in estimating the roughness coeffcient of rock fracture surfaces[J]. Bulletin of Engineering Geology and the Environment, 2017, 76 (3): 1153- 1165
doi: 10.1007/s10064-016-0994-z
10 BARTON N. Modelling rock joint behavior from in situ block tests: implications for nuclear waste reposotory design, ONWI-308 [R]. Salt Lake City: Terra Tek, Inc., 1982.
11 ZHANG G, KARAKUS M, TANG H, et al A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72 (12): 191- 198
12 葛云峰, 唐辉明, 黄磊, 等 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31 (12): 2508- 2517
GE Yun-feng, TANG Hui-ming, HUANG Lei, et al A new representation method for three-dimensional joint roughness coefficient of rock mass discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2508- 2517
13 陈世江, 朱万成, 王创业, 等 考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J]. 岩石力学与工程学报, 2016, 35 (10): 2013- 2021
CHEN Shi-jiang, ZHU Wan-cheng, WANG Chuang-ye, et al Peak shear strength of 3D rock discontinuities based on anisotropic properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (10): 2013- 2021
14 陈世江. 基于数字图像处理的岩体结构面粗糙度三维表征方法及其应用[D]. 沈阳: 东北大学, 2015.
CHEN Shi-jiang. Characterization of 3-D rock discontinuities roughness based on digital image processing technique and its application [D]. Shenyang: Northeastern University, 2015.
15 陈世江, 朱万成, 张敏思, 等 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报, 2012, 34 (11): 2087- 2092
CHEN Shi-jiang, ZHU Wan-cheng, ZHANG Min-si, et al Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (11): 2087- 2092
16 蔡毅, 唐辉明, 葛云峰, 等 岩体结构面三维粗糙度评价的新方法[J]. 岩石力学与工程学报, 2017, 36 (5): 1101- 1110
CAI Yi, TANG Hui-ming, GE Yun-feng, et al A new method for evaluating the roughness of three-dimensional discontinuity surface of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (5): 1101- 1110
17 WANG L, WANG C, KHOSHNEVISAN S, et al Determination of two-dimensional joint roughness coefficient using support vector regression and factor analysis[J]. Engineering Geology, 2017, 231: 238- 251
doi: 10.1016/j.enggeo.2017.09.010
18 王昌硕, 王亮清, 葛云峰, 等 基于统计参数的二维节理粗糙度系数非线性确定方法[J]. 岩土力学, 2017, 38 (2): 565- 573
WANG Chang-shuo, WANG Liang-qing, GE Yun-feng, et al A nonlinear method for determining two-dimensional joint roughness coefficient based on statistical parameters[J]. Rock and Soil Mechanics, 2017, 38 (2): 565- 573
19 宋康明, 姜阳厚, 谭志祥, 等 基于随机森林方法的岩石节理粗糙度系数研究[J]. 地质科技情报, 2018, 37 (3): 263- 267
SONG Kang-ming, JIANG Yang-hou, TAN Zhi-xiang, et al Method to calculate the joint roughness coefficient based on random forest[J]. Geological Science and Technology Information, 2018, 37 (3): 263- 267
20 王朋伟. 库水作用下滑坡变形演化规律研究[D]. 北京: 中国地质大学, 2012.
WANG Peng-wei. Study on the law of deformation evolution of landslide under the action of reservoir water [D]. Beijing: China University of Geosciences, 2012.
21 乔建平, 黄栋, 李倩倩 基于决策树模型的抗滑桩破坏概率[J]. 中国地质灾害与防治学报, 2014, 25 (4): 6- 10
QIAO Jian-ping, HUANG Dong, LI Qian-qian Failure probability of anti-slide pile based on decision tree method[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25 (4): 6- 10
22 王正海, 方臣, 何凤萍, 等 基于决策树多分类支持向量机岩性波谱分类[J]. 中山大学学报: 自然科学版, 2014, 53 (6): 93- 97
WANG Zheng-hai, FANG Chen, HE Feng-ping, et al Hyperspectral rock spectral classification based on the decision tree-support vector machine (DT-SVMs)[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53 (6): 93- 97
23 陈顺满, 吴爱祥, 王贻明, 等 基于决策树模型的岩爆烈度预测[J]. 武汉科技大学学报, 2016, 39 (3): 195- 199
CHEN Shun-man, WU Ai-xiang, WANG Yi-ming, et al Prediction of rock burst intensity based on decision tree model[J]. Journal of Wuhan University of Science and Technology, 2016, 39 (3): 195- 199
24 MAERZ N, NANNI A, MYERS J, et al Laser profilometry for concrete substrate characterization prior to FRP laminate application[J]. Concrete Repair Bulletin, 2001, 14 (3): 4- 8
[1] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[2] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[3] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[4] 黄发明,曹中山,姚池,姜清辉,陈佳武. 基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报(工学版), 2021, 55(3): 472-482.
[5] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[6] 段有康,陈小刚,桂剑,马斌,李顺芬,宋志棠. 基于相位划分的下肢连续运动预测[J]. 浙江大学学报(工学版), 2021, 55(1): 89-95.
[7] 陈纬奇,王敬昌,陈岭,杨勇勤,吴勇. 基于深度神经网络的多因素感知终端换机预测模型[J]. 浙江大学学报(工学版), 2021, 55(1): 109-115.
[8] 李文书,邹涛涛,王洪雁,黄海. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54(8): 1613-1619.
[9] 江冬冬,李道飞,俞小莉. 基于驾驶员需求转矩预测的模型预测控制能量管理[J]. 浙江大学学报(工学版), 2020, 54(7): 1325-1334.
[10] 王晨霖,杨洁,居文军,顾复,陈芨熙,纪杨建. 基于智能家电的短期电力负荷预测与削峰填谷优化[J]. 浙江大学学报(工学版), 2020, 54(7): 1418-1424.
[11] 闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
[12] 刘创,梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163.
[13] 杨萍,王丹,康子健,李童,付利华,余悦任. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.
[14] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[15] 蔡亮,周泓岑,白恒,才振功,尹可挺,贝毅君. 基于多层BiLSTM和改进粒子群算法的应用负载预测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2414-2422.