Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 271-279    DOI: 10.3785/j.issn.1008-973X.2021.02.007
机械工程     
多孔纤维型重整微反应器的等效电阻网络建模
徐志佳(),余昌霖,王清辉*()
华南理工大学 机械与汽车工程学院,广东 广州 510640
Equivalent resistance network modeling for reforming micro-reactor with porous fibrous structure
Zhi-jia XU(),Chang-lin YU,Qing-hui WANG*()
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
 全文: PDF(1347 KB)   HTML
摘要:

针对应用于重整制氢微反应器的复杂多孔金属纤维载体(PFS)的流速场高效分析难题,建立载体中随机微通道的等效电阻网络分析模型. 基于复杂随机纤维结构的统计网络模型,将纤维载体中三维联通的随机微通道结构及与之相连的进出口腔简化为规则的网络通道结构.借鉴基尔霍夫定律,建立纤维载体的等效电阻网络模型,并确定求解方法. 纤维载体流速场实例分析的结果表明,基于等效电阻网络模型求解的纤维载体流速场与计算流体力学(CFD)方法的结果之间的皮尔森相关系数约为98%,且求解效率约为CFD方法的2.9×104倍. 研究成果为多孔纤维型重整制氢微反应器的设计制造提供了新的支撑方案.

关键词: 重整制氢多孔纤维等效电阻网络流速场高效    
Abstract:

An equivalent resistance network model for randomly distributed micro-channels in porous fibrous structure (PFS) was established, aming at the efficient analysis problem of flow velocity field for PFS that used in micro-reactor for hydrogen production by reforming. The complex and randomly-connected micro-channels for fluid flow in PFS, as well as the inlet and outlet manifolds of PFS, were simplified as regular network based on the statistical network developed for complex and random fibrous structure. An equivalent resistance network model for PFS was developed in the light of Kirchhoff’s law, and the solution method was determined. The proposed method was validated by comparing with a previously developed computational fluid dynamics (CFD) approach. Results indicated that, the Pearson correlation coefficient between the velocity distributions of PFS obtained by the two methods was about 98%, while the efficiency of the proposed method was about 2.9×104 times that of CFD approach. In this way, a superior supportive technology for the design and fabrication of micro-reactor with PFSs for hydrogen production via reforming was provided.

Key words: hydrogen production by reforming    porous fibrous structure    equivalent resistance network    velocity field    high efficiency
收稿日期: 2020-07-03 出版日期: 2021-03-09
CLC:  TK 91  
基金资助: 国家自然科学基金资助项目(51875210,51775192);广东省自然科学基金资助项目(2018B030311032);广州市科技计划资助项目(201804010420);聚合物成型加工工程教育部重点实验室开放课题资助项目(KFKT1804);中央高校基本业务费资助项目(2019ZD25)
通讯作者: 王清辉     E-mail: mexzj@scut.edu.cn;wqh@scut.edu.cn
作者简介: 徐志佳(1986—),男,副教授,从事多孔功能结构设计、分析与优化,智能CAD/CAM研究. orcid.org/0000-0002-9183-6924. E-mail: mexzj@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐志佳
余昌霖
王清辉

引用本文:

徐志佳,余昌霖,王清辉. 多孔纤维型重整微反应器的等效电阻网络建模[J]. 浙江大学学报(工学版), 2021, 55(2): 271-279.

Zhi-jia XU,Chang-lin YU,Qing-hui WANG. Equivalent resistance network modeling for reforming micro-reactor with porous fibrous structure. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 271-279.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.007        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/271

图 1  纤维载体制备工艺及外观图和SEM图
图 2  基于纤维载体的甲醇重整制氢微反应器
图 3  随机分布纤维结构统计网络模型示意图
图 4  纤维载体流体微通道网络模型示意图
图 5  出口腔流道网络模型示意图
图 6  纤维载体整体流道网络模型示意图
图 7  纤维载体流体微通道等效电阻网络模型
图 8  出口腔等效电阻网络模型示意图
图 9  纤维载体整体等效电阻网络模型
图 10  基于等效电阻网络与CFD的流速场分布对比
E r η /(10?4 m?s?1 MAPE /% MSE /(10?4 m?s?1
0.7 0.982 1.434 0.741 4.188
0.8 0.978 1.565 0.807 4.617
0.9 0.978 2.499 1.280 4.884
表 1  2种方法获得的流速场的皮尔森相关性
E 方法 vavg /
(m?s?1
vmax /
(m?s?1
vmin /
(10?3 m?s?1
MSE /
(10?6 m?s?1
t /s
0.7 CFD 0.019 0.032 3.162 4.800 17208
0.7 本研究 0.019 0.038 2.232 4.794 0.588
0.8 CFD 0.019 0.032 3.148 4.844 16200
0.8 本研究 0.019 0.038 2.245 4.792 0.560
0.9 CFD 0.020 0.033 3.103 5.005 15980
0.9 本研究 0.019 0.038 2.234 4.794 0.542
表 2  2种方法获得的流速场分布统计
1 FATHY A, ELAZIZ M A, ALHARBI A G A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell[J]. Renewable Energy, 2020, 146: 1833- 1845
doi: 10.1016/j.renene.2019.08.046
2 汪翼东. 面向PEMFC的甲醇现场重整制氢系统设计与应用研究[D]. 杭州: 浙江大学, 2019.
WANG Yi-dong. Design and application study of methanol fuel processing system for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
3 易邹东一. 面向PEMFC的自热型甲醇重整制氢反应器的研发[D]. 杭州: 浙江大学, 2019.
YI Zou-dong-yi. Development of a self-heated methanol steaming reforming reactor for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
4 YAN Y, ZHANG Z, ZHANG L, et al Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40 (4): 1886- 1893
doi: 10.1016/j.ijhydene.2014.11.140
5 PALO D R, DAGLE R A, HOLLADAY J D Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107 (10): 3992- 4021
doi: 10.1021/cr050198b
6 WANG F, WANG G Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor[J]. International Journal of Hydrogen Energy, 2016, 41 (38): 16835- 16841
doi: 10.1016/j.ijhydene.2016.07.083
7 贺行. 面向甲醇重整供氢系统的自热式CO去除微反应器[D]. 杭州: 浙江大学, 2017.
HE Xing. Self-heated microreactor for CO removal from hydrogen supply system via methanol reforming [D]. Hangzhou: Zhejiang University, 2017.
8 HUANG Y X, JANG J Y, CHENG C H Fractal channel design in a micro methanol steam reformer[J]. International Journal of Hydrogen Energy, 2014, 39 (5): 1998- 2007
doi: 10.1016/j.ijhydene.2013.11.088
9 钱淼, 梅德庆, 刘宾虹, 等 微凸台阵列型重整微反应器的传热传质特性[J]. 浙江大学学报: 工学版, 2011, 45 (8): 1387- 1392
QIAN Miao, Mei De-qing, LIU Bin-hong, et al Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (8): 1387- 1392
10 梁灵威. 甲醇重整制氢A型微通道反应器流场优化与传热传质特性研究[D]. 杭州: 浙江大学, 2015.
LIANG Ling-wei. Research on flow field optimization and heat and mass transfer capacity of the A-type microchannel reactor for hydrogen production via methanol reforming [D]. Hangzhou: Zhejiang University, 2019.
11 MEI D, FENG Y, QIAN M, et al An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41 (4): 2268- 2277
doi: 10.1016/j.ijhydene.2015.12.044
12 ZHOU W, KE Y, WANG Q, et al Development of cylindrical laminated methanol steam reforming microreactor with cascading metal foams as catalyst support[J]. Fuel, 2017, 191 (3): 46- 53
doi: 10.1016/j.fuel.2016.11.058
13 LIU Y, ZHOU W, CHEN L, et al Optimal design and fabrication of surface microchannels on copper foam catalyst support in a methanol steam reforming microreactor[J]. Fuel, 2019, 253: 1545- 1555
doi: 10.1016/j.fuel.2019.05.099
14 KE Y, ZHOU W, CHU X, et al Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44 (12): 5755- 5765
doi: 10.1016/j.ijhydene.2019.01.141
15 TANG Y, ZHOU W, PAN M, et al Porous copper fiber sintered felts: an innovative catalyst support of methanol steam reformer for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33 (12): 2950- 2956
doi: 10.1016/j.ijhydene.2008.04.006
16 ZHOU W, WANG Q, LI J, et al Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity[J]. International Journal of Hydrogen Energy, 2015, 40 (1): 244- 255
doi: 10.1016/j.ijhydene.2014.10.139
17 KUNDU A, PARK J M, AHN J E, et al Micro-channel reactor for steam reforming of methanol[J]. Fuel, 2007, 86 (9): 1331- 1336
doi: 10.1016/j.fuel.2006.08.003
18 AMIRI E O, HORMOZI F, KHOSHANDAM B Methanol steam reforming integrated with oxidation in a conical annulus micro-reactor[J]. International Journal of Hydrogen Energy, 2014, 39 (2): 761- 769
doi: 10.1016/j.ijhydene.2013.10.130
19 TONOMURA O, TANAKA S, NODA M, et al CFD-based optimal design of manifold in plate-fin microdevices[J]. Chemical Engineering Journal, 2004, 101 (1): 397- 402
20 AMADOR C, GAVRIILIDIS A, ANGELI P Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage[J]. Chemical Engineering Journal, 2004, 101 (1): 379- 390
21 MEI D, QIAN M, LIU B, et al A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming[J]. Journal of Power Sources, 2012, 205 (2): 367- 376
22 LIU H, LI P Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels[J]. International Journal of Heat and Fluid Flow, 2013, 40 (4): 165- 179
23 郑帅, 谭大鹏, 李霖, 等 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1237- 1251
ZHENG Shuai, TAN Da-peng, LI Lin, et al Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1237- 1251
24 冯艳冰. 表面多孔微通道制氢反应器的设计与制造基础研究[D]. 杭州: 浙江大学, 2019.
FENG Yan-bing. Fundamental study on the design and fabrication of micro channel reactor with porous surface for hydrogen production [D]. Hangzhou: Zhejiang University, 2019.
25 QIAN M, MEI D, YI Z, et al Fluid flow and heat transfer performance in a micro-reactor with non-uniform micro-pin-fin arrays for hydrogen production at low Reynolds number[J]. International Journal of Hydrogen Energy, 2017, 42 (1): 553- 561
doi: 10.1016/j.ijhydene.2016.10.150
26 WANG Y, HUANG L, MEI D, et al Numerical modeling of microchannel reactor with porous surface microstructure based on fractal geometry[J]. International Journal of Hydrogen Energy, 2018, 43 (49): 22447- 22457
doi: 10.1016/j.ijhydene.2018.10.135
27 PAN M, TANG Y, YU H, et al Modeling of velocity distribution among microchannels with triangle manifolds[J]. Aiche Journal, 2010, 55 (9): 1969- 1982
28 TONDEUR D, FAN Y, COMMENGE J M, et al Uniform flows in rectangular lattice networks[J]. Chemical Engineering Science, 2011, 66 (21): 5301- 5312
doi: 10.1016/j.ces.2011.07.027
29 MEI D, LIANG L, QIAN M, et al Modeling and analysis of flow distribution in an A-type microchannel reactor[J]. International Journal of Hydrogen Energy, 2013, 38 (35): 15488- 15499
doi: 10.1016/j.ijhydene.2013.09.105
30 CHENG X, SASTRY A M, LAYTON B E Transport in stochastic fibrous networks[J]. Journal of Engineering Materials and Technology, 2001, 123 (1): 12- 19
31 LUU H T, PERROT C, MONCHIET V, et al Three-dimensional reconstruction of a random fibrous medium: geometry, transport, and sound absorbing properties[J]. Journal of the Acoustical Society of America, 2017, 141 (6): 4768- 4780
doi: 10.1121/1.4989373
32 方玺, 葛权耕 基于随机电阻网络碳毡复合层力阻建模[J]. 应用数学和力学, 2013, 34 (1): 63- 71
FANG Xi, GE Quan-geng Modeling based on the random resistance network carbon felt composite layer[J]. Applied Mathematics and Mechanics, 2013, 34 (1): 63- 71
doi: 10.3879/j.issn.1000-0887.2013.01.007
33 DIDARI S, HARRIS T A L, HUANG W, et al Feasibility of periodic surface models to develop gas diffusion layers: a gas permeability study[J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14427- 14438
doi: 10.1016/j.ijhydene.2012.06.100
34 XU Z J, YANG S, HU G H, et al Numerical study of flow distribution uniformity for the optimization of gradient porosity configuration of porous copper fiber sintered felt for hydrogen production through methanol steam reforming micro-reactor[J]. International Journal of Hydrogen Energy, 2018, 43 (9): 4355- 4370
doi: 10.1016/j.ijhydene.2018.01.083
35 DJILALI N Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities[J]. Energy, 2007, 32 (4): 269- 280
doi: 10.1016/j.energy.2006.08.007
[1] 孟祥飞,王仁广,徐元利. 双行星排汽车纯电驱动模式的转矩分配策略[J]. 浙江大学学报(工学版), 2020, 54(11): 2214-2223.
[2] 王玥,周珠贤,申有青. 聚酰基硫脲基因输送体系的构建与评价[J]. 浙江大学学报(工学版), 2019, 53(3): 598-604.
[3] 姚琳, 马大为, 任杰, 姚建勇, 仲健林, 马吴宁. 高速无杆气缸作动器密封圈润滑性能分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1568-1574.
[4] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[5] 钱淼, 梅德庆, 刘宾虹, 陈子辰. 微凸台阵列型重整微反应器的传热传质特性[J]. J4, 2011, 45(8): 1387-1392.
[6] 王文浩, 郭吉丰, 胡锡幸. 高速高效率的行波型锥面超声波电机[J]. J4, 2011, 45(4): 754-758.
[7] 陈小光, 郑平. 超高效厌氧生物反应器床层能量耗散率[J]. J4, 2011, 45(2): 358-363.
[8] 郗丽萍 赵小祥 王匡. 基于循环矩阵的低密度校验码的VLSI译码设计[J]. J4, 2009, 43(2): 261-265.
[9] 褚有晖, 蒋云良, 刘勇. 虚拟组织上的高效移动主体通讯迁移算法[J]. J4, 2009, 43(12): 2155-2159.
[10] 谢志鹏 徐志南 陈勇 沈文和 郑建明 岑沛霖. 米多霉素的生物检定法与HPLC测定法[J]. J4, 2006, 40(3): 515-519.
[11] 周婕 杨亦文 吴平东 苏宝根. 氟西汀在二甲基环糊精手性固定相上的拆分[J]. J4, 2006, 40(12): 2048-2052.
[12] 卢敏 龚兴国 郭建军 盛卸晃 汪辰卉 郑乐. 念珠藻Fe-SOD基因的克隆及在大肠杆菌中的表达[J]. J4, 2006, 40(11): 2011-2015.