Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 38-45    DOI: 10.3785/j.issn.1008-973X.2021.01.005
土木工程、交通工程、水利工程     
高温高湿盐环境下SBS改性沥青胶浆的高温性能
张勤玲1,2(),黄志义1,*()
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 塔里木大学 水利与建筑工程学院,新疆 阿拉尔 843300
High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment
Qin-ling ZHANG1,2(),Zhi-yi HUANG1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
 全文: PDF(1353 KB)   HTML
摘要:

基于自行设计的室内盐蚀干湿循环试验,采用动态剪切流变仪,对SBS改性沥青胶浆进行温度扫描试验和多重应力重复蠕变恢复(MSCR)试验. 以3.2 kPa应力下的不可恢复蠕变柔量Jnr,3.2为胶浆高温流变性能评价指标,分析试验环境和干湿循环耦合作用对胶浆流变性能的影响. 采用灰色关联理论,探究Jnr,3.2与常规流变参数、干湿循环次数及试验环境之间的关联性. 结果表明,随着盐蚀干湿循环次数的增加,胶浆的复数切变模量、车辙因子及Jnr,3.2均呈增大趋势,相位角和蠕变恢复率呈减小趋势. 在同种试验条件下,硫酸盐环境对胶浆高温性能的影响最大. Jnr,3.2与改进型车辙因子、试验环境的灰色关联度最大,关联度系数均大于0.93. 建议采用日常清扫、定期洒水冲洗的方式来减小路面盐分的积累,提高高温高湿环境中沥青路面的抵抗变形的能力.

关键词: 道路工程SBS改性沥青胶浆高温流变性能多应力重复蠕变恢复(MSCR)灰色关联理论    
Abstract:

The temperature scanning test and multiple stress repeated creep recovery (MSCR) test of SBS modified asphalt mastics were conducted by using dynamic shear rheometer based on the self-designed indoor salt erosion and dry-wet cycle test. The unrecoverable creep compliance (Jnr,3.2) at the stress level of 3.2 kPa was used as the evaluation index of high-temperature rheological properties of the mastics. The coupling effects of environment and dry-wet cycles on the rheological properties of the mastics were analyzed. The grey correlation theory was used to explore the correlation between Jnr,3.2 and conventional rheological parameter, dry-wet cycles and test environment. The complex shear modulus, rutting factor and Jnr,3.2 showed an increasing trend with the increase of dry-wet cycles, while the phase angle and creep recovery rate showed a decreasing trend. The sulfate environment has the greatest influence on the high temperature performance of asphalt mastics under the same test conditions. Jnr,3.2 has the largest grey correlation with improved rutting factor and test environment, and the correlation coefficient is greater than 0.93. It is suggested that the method of daily cleaning and regular watering should be adopted to reduce the accumulation of salt and improve the resistance to deformation of asphalt pavement in high temperature and humidity environment.

Key words: road engineering    SBS modified asphalt mastics    high temperature rheological property    multiple stress repeated creep recovery (MSCR)    grey relational theory
收稿日期: 2020-02-09 出版日期: 2021-01-05
CLC:  U 414  
基金资助: 浙江省交通科技资助项目(2018QNA4023);宁波市交通运输委员会科技计划资助项目(2014191)
通讯作者: 黄志义     E-mail: zhqling@zju.edu.cn;hzy@zju.edu.cn
作者简介: 张勤玲(1982—),女,副教授,从事沥青路面新材料及结构层优化设计. orcid.org/0000-0003-3460-7145.E-mail: zhqling@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张勤玲
黄志义

引用本文:

张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.

Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.005        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/38

技术指标 试验值 规范值 试验方法
针入度(25 °C, 100 g, 5 s)/0.1 mm 55 40~60 T 0604
软化点/°C 86.6 ≥60 T 0606
延度(5 °C, 5 cm/min)/cm 31.5 ≥20 T 0605
动力黏度(135 °C)/(Pa·s) 2.5 $\leqslant 3$ T 0739
闪点/°C 320 ≥230 T 267
TFOT后质量变化率/% 0.08 ≤1 T 5304
TFOT后延度变化值(5 °C,5 cm/min)/cm 71.6 ≥65 T 4509
TFOT后针入度比(25 °C)/% 17.3 ≥15 T 0603
表 1  SBS改性沥青的性能指标
技术指标 测试值 规范值 试验方法
ρ/(g·cm?3) 2.765 ≥2.50 T 0352
ww/% 0.49 ≤1 T 0332
w1/% 100 100 T 0351
w2/% 95.23 90~100 T 0351
w3/% 85.91 75~100 T 0351
α 0.68 <1 T 0353
表 2  矿粉的性能指标
图 1  SBS改性沥青胶浆的盐蚀干湿循环试验方案
图 2  MSCR试验典型的蠕变恢复曲线
图 3  不同试验环境下SBS改性沥青胶浆复数模量随温度变化
图 4  不同试验环境SBS改性沥青胶浆相位角随温度变化
图 5  不同试验环境SBS改性沥青胶浆车辙因子随温度变化
图 6  不同应力下SBS改性沥青胶浆的蠕变与恢复循环曲线(对照组)
图 7  不同应力下SBS改性沥青胶浆的恢复率和不可恢复蠕变柔量
试验环境 ${ {{X} } }_{0}^{*}/{\rm{kPa}}^{-1}$ ${ {{X} } }_{1}^{*}/{\rm{kPa} }$ ${ {{X} } }_{2}^{*}/{\rm{kPa} }$ ${ {{X} } }_{3}^{*}$ ${ {{X} } }_{4}^{*}/ {\text{%}}$
清水 3.9884 124.67 161.114 8 0
清水 4.1979 148.17 187.338 15 0
清水 4.5989 171.92 189.430 25 0
5% NaCl 4.0955 130.99 205.066 8 5%
5% NaCl 4.2978 157.66 208.427 15 5%
5% NaCl 4.3531 182.11 227.889 25 5%
5% Na2SO4 4.2857 151.80 209.869 8 5%
5% Na2SO4 4.5348 189.44 214.709 15 5%
5% Na2SO4 4.7676 227.96 272.884 25 5%
表 3  各因素灰色关联分析的原数据
${{{X}}}_{0}$ ${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
1 1 1 1 1
1.05250 1.1885 1.1628 1.875 1
1.15307 1.3790 1.1757 3.125 1
表 4  清水环境中初值化后的参考序列与比较序列
${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
0 0 0 0
0.1360 0.1102 0.8225 0.0525
0.2259 0.0227 1.9719 0.1531
表 5  清水环境中差序列绝对值
${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
1 1 1 1
0.91930 0.8994 0.5452 0.9494
0.87275 0.9775 0.3333 0.8656
表 6  清水环境中灰关联系数
试验环境 ${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
清水 0.8974 0.9589 0.6262 0.9383
5% NaCl 0.7980 0.9527 0.5322 0.9364
5% Na2SO4 0.8541 0.9363 0.6284 0.9483
表 7  不同试验环境下车辙因子与各因素之间的灰关联度
1 张争奇, 张苛 添加剂对含盐高湿环境沥青混合料水稳定性的影响[J]. 功能材料, 2015, 384 (21): 132- 136
ZHANG Zheng-qi, ZHANG Ke Influence of additives on the water stability of asphalt mixture in salty and humid environment[J]. Functional Materials, 2015, 384 (21): 132- 136
2 张争奇, 王志祥, 李志宏, 等 含盐高湿环境下沥青混合料耐久性[J]. 北京工业大学学报, 2015, 41 (9): 1365- 1374
ZHANG Zheng-qi, WANG Zhi-xiang, LI Zhi-hong, et al Durability of asphalt pavement under salty and humid environment[J]. Journal of Beijing University of Technology, 2015, 41 (9): 1365- 1374
3 张苛, 张争奇 含盐高湿环境沥青混合料力学特性的劣化[J]. 华南理工大学学报: 自然科学版, 2015, 43 (8): 107- 111
ZHANG Ke, ZHANG Zheng-qi Deterioration of mechanical properties of asphalt mixture in salty and humid environment[J]. Journal of South China University of Technology: Natural Science Edition, 2015, 43 (8): 107- 111
4 赵青, 赵军 沿海地区盐度对沥青路面抗永久变形性能的影响[J]. 大连交通大学学报, 2016, 37 (2): 69- 72
ZHAO Qing, ZHAO Jun Influence of coastal area salinity on road surface resistance to permanent deformation performance[J]. Journal of Dalian Jiao Tong University, 2016, 37 (2): 69- 72
doi: 10.11953/j.issn.1673-9590.2016.02.069
5 张光海. 北方滨海地区沥青混凝土路面损伤机理及使用寿命研究 [D]. 大连: 大连理工大学, 2013.
ZHANG Guang-hai. Research of damage mechanism and service life of coastal area asphalt pavement in Noah China [D]. Dalian: Dalian University, 2013.
6 郑霜杰, 刘凤鸣, 李应成, 等 盐溶液与高温耦合作用下沥青混合料性能衰变规律及防治措施[J]. 公路工程, 2017, 42 (5): 140- 148
ZHENG Shuang-jie, LIU Feng-ming, LI Ying-cheng, et al Decay regularity and improvement measures of road performance and mechanical properties of asphalt concrete under salt-wet-heat condition[J]. Highway Engineering, 2017, 42 (5): 140- 148
doi: 10.3969/j.issn.1674-0610.2017.05.029
7 王义忠 含盐高湿环境对沥青混合料的侵蚀机理研究[J]. 公路工程, 2015, (5): 250- 254
WANG Yi-zhong Study the erosion mechanism of the asphalt mixture on Salty and humid environment[J]. Highway Engineering, 2015, (5): 250- 254
doi: 10.3969/j.issn.1674-0610.2015.05.055
8 崔亚楠, 赵琳, 韩吉伟, 等 盐冻融循环条件下沥青高温流变性能及微观结果[J]. 复合材料学报, 2017, 34 (8): 1839- 1846
CUI Ya-nan, ZHAO Lin, HAN Ji-wei, et al High temperature rheological properties and microstructures of asphalt under salt freezing cycles[J]. Aeta Materiae Compositae Sinica, 2017, 34 (8): 1839- 1846
9 付海英, 谢雷东, 虞鸣, 等 SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9- 12
FU Hai-ying, XIE Lei-dong, YU Ming, et al Dynamic shear rheologic properties of SBS modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (12): 9- 12
doi: 10.3969/j.issn.1002-0268.2005.12.003
10 ANN M B. Interim planning for a future strategic highway research program. national cooperative highway research program report 510 [R]. Washington D.C.: Transportation Research Board of the National Academies, 2003: 37-40.
11 公路沥青路面施工技术规范: JTG F40—2004 [S]. 北京: 北京人民交通出版社, 2005.
12 公路工程集料试验规程: JTG E42—2005 [S]. 北京: 人民交通出版社, 2005.
13 姜睆. 沥青胶浆自愈合能力研究[D]. 武汉: 武汉理工大学, 2011.
JIANG Wan. Research on the self-healing capacity of bitumen mastics [D]. Wuhan: Journal of Wuhan University of Technology, 2011.
14 公路工程沥青及沥青混合料试验规程: JTG E20—2011 [S]. 北京: 人民交通出版社, 2011.
15 刘思峰, 杨英杰. 灰色系统理论及其应用[M]. 7版. 北京: 科学出版社, 2014: 17–29.
16 CAMARO S, SIMONDI B, VISTOLI P P, et al. Long-term behavior of bituminized waste [C]// Proceedings of the International Workshop on the Safety and Performance Evaluation of Bituminization Processes for Radioactive Waste. Czech Republic: Nuclear Research Institute Rez, 1999: 157.
17 GWINNER B. Comportement sous eau des déchets radioactifs bitumes: validation expérimentale du modèle de dégradation colonbo [D]. France: Nancy, Institute National Polytechnique de Lorraine, 2004.
18 王连生. 有机污染化学进展[D]. 北京: 化学工业出版社, 2006.
WANG Lian-sheng. Progress in organic pollution chemistry [D]. Beijing: Chemical Industry Press, 2006.
19 查旭东, 任旭, 傅广文 氯盐融雪剂对SBS改性沥青混合料路用性能的影响分析[J]. 交通科学与工程, 2012, 28 (1): 6- 9
ZHA Xu-dong, REN Xu, FU Guang-wen Influence of chlorine salt as a snowmelt agent on pavement performances for SBS modified asphalt mixtures[J]. Journal of Transport Science and Engineering, 2012, 28 (1): 6- 9
doi: 10.3969/j.issn.1674-599X.2012.01.002
20 李海军, 黄晓明, 王宏畅 道路沥青在使用过程中的水老化[J]. 石油学报(石油加工), 2005, 21 (4): 74- 78
LI Hai-jun, HUANG Xiao-ming, WANG Hong-chang Water aging of asphalt during its service life of pavements[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21 (4): 74- 78
21 YEH P H, NIEN Y H, CHEN J H, et a1 Thermal and rheological properties of maleated polypropylene modified asphalt[J]. Polymer Engineering and Science, 2005, 45 (8): 1152- 1158
doi: 10.1002/pen.20386
22 SHENOY A V, SAINI D R. Thermoplastic melt rheology and processing [M]. New York: Marcel Dekker Inc, 1996.
[1] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[2] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.
[3] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[4] 黄志义, 胡晓宇, 王金昌, 章俊屾. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报(工学版), 2015, 49(8): 1448-1454.
[5] 王新飞, 黄志义, 刘卓, 朱兴一, 徐伟. Delaunay三角网格的沥青混合料粗集料分布特性[J]. J4, 2012, 46(2): 263-268.