Please wait a minute...
浙江大学学报(工学版)
土木工程、水利工程、交通工程     
高黏沥青中高温感温性评价方法的适用性
黄志义, 胡晓宇, 王金昌, 章俊屾
浙江大学 交通工程研究所,浙江 杭州 310058
Applicability of middle and high-temperature susceptibility evaluation method for high-viscosity asphalt
HUANG Zhi-yi, HU Xiao-yu, WANG Jin-chang, ZHANG Jun-shen
Institute of Transportation Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(903 KB)   HTML
摘要:

利用新型直投式高黏改性剂制备高黏度改性沥青,采用针入度指数(PI)、针入度黏度指数(PVN)、黏温指数(VTS)和差示扫描量热试验(DSC)评价高黏沥青、SBS改性沥青和基质沥青中高温区间的感温性能,结合4组分试验分析高黏改性剂对沥青中高温区间感温性能的改善机理,并对DSC评价感温性能的适用性进行讨论.结果表明:高黏沥青感温性能与温度区间有关,在3种沥青中,5~60 ℃,高黏沥青的感温性最弱,60~175 ℃,高黏沥青的感温性最强;高黏改性剂改性后,沥青中对温度较为敏感的轻质组分比例减少,沥青的中高温感温性和高温稳定性得到显著改善;DSC可评价沥青中高温区间的感温性能,弥补PI、PVN指标适用性上的不足.

Abstract:

High-viscosity modified asphalt was prepared using a new type of directed high-viscosity modifier, and the temperature susceptibility of high-viscosity modified asphalt, SBS-modified asphalt and base asphalt in the middle and high-temperature interval were evaluated using penetration index (PI), penetration-viscosity number (PVN), viscosity-temperature susceptibility (VTS), and differential scanning calorimetry (DSC). On this basis, the improved susceptibility mechanism of the high-viscosity modified asphalt in the middle and high-temperature interval was analyzed by a four-component test, and the applicability of the DSC method to the evaluation of temperature susceptibility performance was also investigated. The results show that the temperature susceptibility performance of high-viscosity asphalt was related to the temperature interval. Among the three types of asphalt, the temperature susceptibility of the high-viscosity asphalt was the weakest in the range 5~60 ℃, while its susceptibility became the strongest at 60~175 ℃. After treating with the high-viscosity modifier, the proportion of the light components which are sensitive to temperature decreased, thus enhancing the high-temperature susceptibility and stability of asphalt. Besides, DSC could be used to evaluate the susceptibility of asphalt in the middle and high-temperature interval, compensating the deficiency of PI and PVN in actual applications.

出版日期: 2015-08-01
:  TU 416.217  
基金资助:

国家自然科学基金资助项目(51078331、51108411);交通部西部交通建设科技资助项目(2011318806780);浙江省交通厅科技资助项目(2013H28-6)

通讯作者: 王金昌,男,副教授.     E-mail: wjc501@zju.edu.cn
作者简介: 黄志义(1957—),男,教授,博导,主要从事道路建设与维护新材料与新技术研究. E-mail: hzy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄志义, 胡晓宇, 王金昌, 章俊屾. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.08.007.

HUANG Zhi-yi, HU Xiao-yu, WANG Jin-chang, ZHANG Jun-shen. Applicability of middle and high-temperature susceptibility evaluation method for high-viscosity asphalt. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.08.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.08.007        http://www.zjujournals.com/eng/CN/Y2015/V49/I8/1448

[1] 王仕峰,马庆丰,李剑新. 排水路面用高黏度改性沥青的研究与应用进展[J]. 石油沥青,2012,26(1): 1-8.
WANG Shi-feng, MA Qing-feng, LI Jian-xin. Study and application of high viscosity modified asphalt used in porous pavement [J]. Petroleum Asphalt, 2012, 26(1): 1-8.
[2] 李立寒,耿韩,孙艳娜,等. 高黏度沥青性能评价指标与标准的试验[J]. 同济大学学报: 自然科学版,2010,38(8): 1155-1160.
LI Li-han, GENG Han, SUN Yan-na, et al. Viscosity evaluating indicators and criteria of high-viscosity modified asphalt [J]. Journal of Tongji University: Natural Science, 2010, 38(8): 1155-1160.
[3] 张锐,黄晓明,侯曙光. 新型沥青添加剂 TPS 的性能[J]. 交通运输工程学报,2006,6(4): 36-40
ZHANG Rui, HUANG Xiao-ming,HOU Shu-guang, Performances of new type asphalt additive TPS [J]. Journal of Traffic and Transportation Engineering,2006,6(4): 36-40.
[4] 刘学亮,余剑英,吴少鹏,等. 高黏度改性沥青的制备与性能研究[J]. 石油沥青,2008,21(6): 7-10.
LIU Xue-liang, YU Jian-ying,WU Shao-peng, et al. Preparation and properties of high viscosity modified asphalts [J]. Petroleum Asphalt,2008,21(6): 7-10.
[5] 梁亚军,许志鸿. 高黏度改性沥青的性能评价[J]. 石油沥青,2010, 24(005): 20-22.
LIANG Ya-jun,XU Zhi-hong. Performance evaluation of high viscosity modified asphalt [J]. Petroleum Asphalt,2010, 24(005): 20-22.
[6] 沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社, 2001: 79-80.
[7] 赵可,李海骢. 改性沥青感温性评价指标的讨论[J]. 中国公路学报,2000,20(4): 2-7.
ZHAO Ke,LI Hai-cong. Discussion of the temperature susceptibility indexes of modified asphalt [J]. China Journal of Highway and Transport,2000,20(4): 2-7.
[8] 陈佩茹,刘炤宇. 关于沥青感温性能指标的讨论[J]. 交通运输工程学报,2002,2(2): 23-26.
CHEN Pei-ru, LIU Zhao-yu. On indices of temperature susceptibility of asphalt [J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 23-26.
[9] 陈华鑫,刚增军,王应龙,等. SBS 改性沥青温度敏感性指标研究[J]. 建筑材料学报,2010,13(005): 691-696.
CHEN Hua-xin, GANG Zeng-jun, WANG Ying-long, et al. Temperature susceptibility indexes of SBS modified asphalt binders [J]. Journal of Building Materials,2010,13(005): 691-696.
[10] 于新,孙文浩,罗怡琳,等. 橡胶沥青温度敏感性评价方法研究[J]. 建筑材料学报,2013 (2): 266-270.
YU Xin, SUN Wen-hao, LUO Yi-lin, et al. Research on the evaluation index of temperature sensitivity of CRMA [J]. Journal of Building Materials,2013 (2): 266-270.
[11] 张肖宁. 沥青与沥青混合料的黏弹力学原理及应用[M]. 人民交通出版社,2006: 6-7.
[12] 刘振海. 热分析导论[M].北京:化学工业出版社,1991: 274-287.
[13] 原健安. 沥青中组成聚集状态转变对物理性能的影响[J]. 西安公路交通大学学报,1997,17(4): 10-14.
YUAN Jian-an. Effect of the state transition in asphalt composition on the physical properties [J]. Journal of Xian Highway University,1997,17(4): 1014.
[14] HARRISON I R, WANG G, HSU T C. A differential scanning calorimetry study of asphalt binders [R]. Washington DC: Strategic Highway Research Program National Research Council,1992.
[15] GANDHI T. Effects of warm asphalt additives on asphalt binder and mixture properties [D]. South carolina, city of clemson: Clemson University, 2008.
[16] 曾凡奇, 黄晓明,李海军. 沥青性能的DSC评价方法[J].交通运输工程学报,2005,5(4): 37-42.
ZENG Fan-qi, HUANG Xiao-ming, LI Hai-jun. Evaluation method of differential scanning calorimetry for asphalt performance [J]. Journal of Traffic and Transportation Engineering,2005,5(4): 37-42.
[17] 梁乃兴,廉向东. 聚合物改性沥青示差扫描量热法 (DSC) 分析研究[J]. 西安公路交通大学学报, 2000,20(3): 29-30.
LIANG Nai-xing, LIAN Xiang-dong. Study of polymer modified bitumen by DSC [J]. Journal of Xian Highway University, 2000,20(3): 29-30.
[18] 马峰,张超,傅珍. 纳米碳酸钙改性沥青的 DSC 分析[J]. 郑州大学学报:工学版,2006,27(4): 49-52.
MA Feng, ZHANG Chao, FU Zhen. DSC study of Nano-CaCO3 modified asphalt [J]. Journal of Zhengzhou University: Engineering Science,2006,27(4): 49-52.
[19] 孙璐,辛宪涛,王鸿遥, 等. 多维数多尺度纳米材料改性沥青的微观机理[J]. 硅盐酸学报,2012,40(10): 1437-1447.
SUN Lu, XIN Xian-tao, WANG Hong-yao, et al. Microscopic mechanism of modified asphalt by multi-dimensional and multi-scale nanomaterial [J]. Journal of The Chinese Ceramic Society,2012,40(10): 1437-1447.
[20] JTG F40. 公路沥青路面施工技术规范[S]. 人民交通出版社,2004.
JTG F40. Technical specifications for construction of highway asphalt pavements [S]. China communication press,2004.
[21] 张金升,等.沥青材料[M].北京:化学工业出版社, 2009: 240-241.
[22] PFEIFFER J P, VAN DOORMSAAL P M. The rheological properties of asphaltic bitumens [J]. Journal of the Institute of Petroleum Technologists,1936,22: 414-440.
[23] MCLEOD N W. Asphalt cement Pen-vis number and its application to moduli of stiffness [J]. Journal of Testing and Evaluation,1976,4(4): 275-282.
[24] 陈华鑫,贺孟霜,李媛媛,等. 沥青与沥青组分的差示扫描量热研究[J]. 重庆交通大学学报:自然科学版,2013,32(4): 207-210.
CHEN Hua-xin, HE Meng-shuang, LI Yuan-yuan, et al. DSC analysis on asphalt and asphalt fractions [J]. Journal of Chongqing Jiaotong University: Natural Science,2013,32(4): 207-210.

No related articles found!