Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 20-30    DOI: 10.3785/j.issn.1008-973X.2021.01.003
土木工程、交通工程、水利工程     
考虑替代救援可靠度的应急配置优化模型
张翕然1(),陈绍宽1,*(),汪波2,刘爽1,王卓1
1. 北京交通大学 交通运输部综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
2. 北京市交通信息中心,北京 100161
Emergency allocation optimization model considering reliability of replaceable rescue
Xi-ran ZHANG1(),Shao-kuan CHEN1,*(),Bo WANG2,Shuang LIU1,Zhuo WANG1
1. MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
2. Beijing Transportation Information Center, Beijing 100161, China
 全文: PDF(1194 KB)   HTML
摘要:

为了合理规划应急设施选址与资源配置方案,分析救援车辆失效对系统覆盖可靠度的影响. 通过构建虚拟车辆资源池,考虑实际中存在使用系统内剩余可用车辆替代失效车辆的情景,提出救援覆盖可靠度的计算方法. 以系统总成本最小化为目标,考虑设施分级和2种救援车辆的匹配,建立考虑替代救援的应急配置双层规划模型. 上层模型优化设施选址与车辆配置方案,下层模型进行物资需求分配. 设计双层启发式算法进行求解. 案例分析表明:随着车辆间容量倍数在合理范围内增长,系统总成本呈现先降低后平稳的趋势,该模型可以为最优的车辆种类匹配方案选择提供依据. 通过与基于传统可靠度计算方法得到的结果对比表明,使用所提的可靠度计算方法,有助于减少系统总成本,在不同车辆类型匹配方案下的平均优化程度为9.01%.

关键词: 应急设施选址与车辆配置集合覆盖车辆资源池救援覆盖可靠度替代救援    
Abstract:

The impact of the rescue vehicle failure was analyzed in order to obtain a reasonable emergency facility location and vehicle allocation plan. A rescue reliability calculation method was proposed by constructing the hypothetical vehicle resource pool and fully considering the situation of using remaining available vehicles in the emergency system to replace the failed vehicles. A bi-level model for emergency allocation considering replaceable rescue was constructed by considering the facility classification and the matching of two types of rescue vehicles in order to minimize the total cost. The upper-level model aimed to optimize the plan of emergency facility location and vehicle allocation, and the lower-level model assigned the emergency supplies demand. A bi-level heuristic algorithm was designed to solve the model. The case study shows that the total cost tends to decrease firstly and then stabilize as the capacity multiple between vehicles increases within a reasonable range. A basis for the optimization of vehicle types matching can be provided by the model. The comparison with the traditional reliability calculation method shows that the total cost can be effectively reduced by using the proposed method, and the average optimization degree of the total cost in different vehicle types matching scenarios is 9.01%.

Key words: emergency facility location and vehicle allocation    set covering    vehicle resource pool    rescue coverage reliability    replaceable rescue
收稿日期: 2020-04-06 出版日期: 2021-01-05
CLC:  U 491  
基金资助: 国家自然科学基金资助项目(71571015,71621001);北京市自然科学基金资助项目(L191023)
通讯作者: 陈绍宽     E-mail: 931669521@qq.com;shkchen@bjtu.edu.cn
作者简介: 张翕然(1995—),男,博士生,从事交通运输规划与管理的研究. orcid.org/0000-0002-2255-6865. E-mail: 931669521@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张翕然
陈绍宽
汪波
刘爽
王卓

引用本文:

张翕然,陈绍宽,汪波,刘爽,王卓. 考虑替代救援可靠度的应急配置优化模型[J]. 浙江大学学报(工学版), 2021, 55(1): 20-30.

Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.003        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/20

图 1  上层模型染色体编码
图 2  下层模型粒子编码
图 3  双层启发式算法流程图
万元
$j $ ${g_j}$ ${f_{j1}}$ ${f_{j2}}$
1 0.50 0 130.00
2 1.00 234.00 421.20
3 0.60 234.00 421.20
4 0.75 182.00 327.60
5 1.15 234.00 421.20
6 0.80 182.00 327.60
7 0.85 175.50 315.90
8 1.00 247.00 444.60
9 1.05 182.00 327.60
10 1.25 169.00 304.20
11 0.75 169.00 304.20
12 0.65 175.50 315.90
13 1.15 182.00 327.60
14 1.25 221.00 397.60
15 0.95 227.50 409.50
16 0.83 0 117.00
表 1  应急设施候选点相关成本汇总表
j a xj1 xj2 j a xj1 xj2
1 2 4 2 9 0 0 0
2 0 0 0 10 1 2 1
3 0 0 0 11 0 0 0
4 1 2 0 12 0 0 0
5 0 0 0 13 1 1 1
6 1 2 1 14 0 0 0
7 0 0 0 15 1 1 1
8 0 0 0 16 1 1 1
表 2  应急设施选址与车辆配置结果(容量倍数=2)
图 4  算法稳定性随容量倍数的变化
图 5  总成本随容量倍数的变化
图 6  车辆数量随容量倍数的变化
图 7  设施数量随容量倍数的变化
n 设施等级选择结果
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12 j=13 j=14 j=15 j=16
1.2 2 0 0 1 0 2 1 0 0 0 0 0 2 0 1 2
1.3 2 0 0 1 0 2 0 0 0 1 0 0 2 0 1 1
1.4~1.6 2 0 0 1 0 2 1 0 0 0 0 0 2 0 1 1
1.7 2 0 0 1 0 2 0 0 0 1 0 0 1 0 1 1
1.80~1.90 2 0 0 1 0 2 1 0 0 0 0 0 1 0 1 1
2.0 2 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1
2.1 2 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1
2.2 2 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1
2.3 2 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1
2.4 2 0 0 1 0 1 1 0 0 0 0 1 0 0 2 1
2.5 2 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1
2.6 2 0 0 1 0 2 0 0 0 1 0 0 0 0 1 1
2.7~3.0 2 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1
表 3  不同容量倍数下的应急设施选址结果
图 8  分项成本随容量倍数的变化
n 设施等级选择结果
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12 j=13 j=14 j=15 j=16
1.2 2 0 0 2 0 1 2 0 0 0 0 0 2 1 1 1
1.3 2 0 0 1 0 1 0 0 0 2 0 0 1 2 1 1
1.4 2 0 0 2 0 1 0 0 0 2 0 0 2 0 1 1
1.50~1.60 2 0 0 0 2 1 1 0 0 0 0 0 2 0 1 1
1.7 2 0 0 1 0 2 1 0 0 0 0 0 2 0 1 1
1.8 2 0 1 0 0 2 1 0 0 0 0 0 2 0 1 1
1.9 2 0 0 1 0 2 1 0 0 0 0 0 1 0 1 1
2.0 2 0 1 0 0 2 0 0 1 1 0 0 1 0 1 1
2.1 2 0 1 0 0 2 0 0 0 1 0 0 0 0 2 1
2.20~2.30 2 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1
2.4 2 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1
2.5 2 0 0 1 0 1 0 0 0 2 0 0 0 0 1 1
2.6 2 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1
2.70~2.80 2 0 0 1 0 2 0 0 0 1 0 0 0 0 1 1
2.90~3.00 2 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1
表 4  不同容量倍数下的应急设施选址结果(对照组)
图 9  不同可靠度计算方法的总成本对比
1 冯凯, 徐志胜, 冯春莹, 等 小城镇突发公共事件应急决策系统的研究[J]. 灾害学, 2005, 20 (2): 6- 10
FENG Kai, XU Zhi-sheng, FENG Chun-ying, et al Study on decision-making system of unexpected public emergency events in small towns[J]. Journal of Catastrophology, 2005, 20 (2): 6- 10
doi: 10.3969/j.issn.1000-811X.2005.02.002
2 BOONMEE C, ARIMURA M, ASADA T Facility location optimization model for emergency humanitarian logistics[J]. International Journal of Disaster Risk Reduction, 2017, 24: 485- 498
doi: 10.1016/j.ijdrr.2017.01.017
3 郑斌, 马祖军 震后恢复期物资配送中的多周期选址—联运问题[J]. 交通运输系统工程与信息, 2014, 14 (4): 230- 238
ZHENG Bin, MA Zu-jun Multi-period joint location-transportation during post-earthquake restoration[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14 (4): 230- 238
doi: 10.3969/j.issn.1009-6744.2014.04.033
4 龙京, 黄钢, 王孟钧, 等 铁路应急物资储备点选址[J]. 交通运输工程学报, 2011, 11 (1): 74- 78
LONG Jing, HUANG Gang, WANG Meng-jun, et al Reserve depot location of railway emergency material[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (1): 74- 78
doi: 10.3969/j.issn.1671-1637.2011.01.013
5 吴艳华, 王富章, 李芳 铁路救援基地层级规划选址模型[J]. 交通运输工程学报, 2013, 13 (3): 86- 93
WU Yan-hua, WANG Fu-zhang, LI Fang Hierarchical planning location model of railway rescue center[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (3): 86- 93
doi: 10.3969/j.issn.1671-1637.2013.03.012
6 YANG Z, CHEN H X, CHU F, et al An effective hybrid approach to the two-stage capacitated facility location problem[J]. European Journal of Operational Research, 2018, 275: 467- 480
7 KILCI F, KARA B Y, BOZKAYA B Locating temporary shelter areas after an earthquake: a case for Turkey[J]. European Journal of Operational Research, 2015, 243 (1): 323- 332
doi: 10.1016/j.ejor.2014.11.035
8 黄亚东, 张土乔, 王直民, 等 部分覆盖下供水管网水质监测点优化选址方法[J]. 浙江大学学报: 工学版, 2008, 42 (1): 8- 12
HUANG Ya-dong, ZHANG Tu-qiao, WANG Zhi-min, et al Optimizing water quality monitoring stations in water distribution network in presence of partial coverage[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (1): 8- 12
9 张燕, 张念卿 基于部分覆盖理论的供水管网二次加氯点选址[J]. 浙江大学学报: 工学版, 2011, 45 (4): 695- 698
ZHANG Yan, ZHANG Nian-qing Optimization of locations of booster chlorination stations in water distribution system based on theory of partial coverage[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (4): 695- 698
10 周向红, 成思婕, 成鹏飞 自营回收模式下再制造逆向物流网络多周期多目标选址规划[J]. 系统工程, 2018, 36 (9): 146- 153
ZHOU Xiang-hong, CHENG Si-jie, CHENG Peng-fei Multi cycle and multi objective location planning for remanufacturing reverse logistics network under self recovery mode[J]. Systems Engineering, 2018, 36 (9): 146- 153
11 王来军, CHIEN S I J, 赵建有, 等 货运站场选址分配问题的两阶段决策优化: 以中国延安为例(英文)[J]. 中国公路学报, 2015, 28 (7): 102- 114
WANG Lai-jun, CHIEN S I J, ZHAO Jian-you, et al Two-stage decision optimization of freight station location-allocation problem: a case study in Yan’an, China (English Edition)[J]. China Journal of Highway and Transport, 2015, 28 (7): 102- 114
doi: 10.3969/j.issn.1001-7372.2015.07.013
12 XIE S Y, OUYANG Y F Reliable service systems design under the risk of network access failures[J]. Transportation Research Part E, 2019, 122: 1- 13
13 白雪洁 模糊环境下应急物资预置的优化方法[J]. 系统工程理论与实践, 2015, 35 (6): 1465- 1473
BAI Xue-jie Optimization for pre-positioning emergency supplies problem under fuzzy environment[J]. Systems Engineering: Theory and Practice, 2015, 35 (6): 1465- 1473
doi: 10.12011/1000-6788(2015)6-1465
14 MOHAMMADI M, JULA P, TAVAKKOLI-MOGHADDAM R Reliable single-allocation hub location problem with disruptions[J]. Transportation Research Part E, 2019, 123: 90- 120
doi: 10.1016/j.tre.2019.01.008
15 于冬梅, 高雷阜, 赵世杰 不确定与损毁情景下可靠性设施选址鲁棒优化模型与算法研究[J]. 系统工程理论与实践, 2019, 39 (2): 498- 508
YU Dong-mei, GAO Lei-fu, ZHAO Shi-jie Robust optimization model and algorithm for reliability facility location under uncertainty and failure scenarios[J]. Systems Engineering: Theory and Practice, 2019, 39 (2): 498- 508
doi: 10.12011/1000-6788-2017-1365-11
16 RAWLS C G, TURNQUIST M A Pre-positioning of emergency supplies for disaster response[J]. Transportation Research Part B, 2010, 44 (4): 521- 534
doi: 10.1016/j.trb.2009.08.003
17 CAUNHYE A M, ZHANG Y D, LI M Z, et al A location-routing model for prepositioning and distributing emergency supplies[J]. Transportation Research Part E, 2016, 90 (43): 161- 176
18 JIN J G, LU L J, SUN L J, et al. Optimal allocation of protective resources in urban rail transit networks against intentional attacks [J]. Transportation Research Part E, 2015, 84: 73-87.
19 BAHARMAND H, COMES T, LAURAS M Bi-objective multi-layer location-allocation model for the immediate aftermath of sudden-onset disasters[J]. Transportation Research Part E, 2019, 127: 86- 110
doi: 10.1016/j.tre.2019.05.002
20 CHAUHAN D, UNNIKRISHNAN A, FIGLIOZZI M Maximum coverage capacitated facility location problem with range constrained drones[J]. Transportation Research Part C, 2019, 99: 1- 18
doi: 10.1016/j.trc.2018.12.001
21 AI Y F, LU J, ZHANG L L The optimization model for the location of maritime emergency supplies reserve bases and the configuration of salvage vessels[J]. Transportation Research Part E, 2015, 83: 170- 188
doi: 10.1016/j.tre.2015.09.006
22 艾云飞, 曹德胜, 沈兵, 等 VTS中心布局及雷达站选址-配置双层规划模型[J]. 大连海事大学学报, 2017, 43 (3): 107- 111
AI Yun-fei, CAO De-sheng, SHEN Bing, et al Bi-level optimization model of VTS center layout and radar station location-configuration[J]. Journal of Dalian Maritime University, 2017, 43 (3): 107- 111
23 秦进, 叶勇, 申纯燕, 等 考虑可靠性的交通网络应急资源布局优化[J]. 铁道科学与工程学报, 2018, 15 (2): 506- 514
QIN Jin, YE Yong, SHEN Chun-yan, et al Optimization method for emergency resource layout for transportation network considering service reliability[J]. Journal of Railway Science and Engineering, 2018, 15 (2): 506- 514
doi: 10.3969/j.issn.1672-7029.2018.02.031
24 郭咏梅, 胡大伟, 珠兰, 等 考虑可靠性要素的应急物流设施选址分配问题的建模研究[J]. 中国安全生产科学技术, 2017, 13 (2): 85- 89
GUO Yong-mei, HU Da-wei, ZHU Lan, et al Study on modeling for location-allocation problem of emergency logistics facility considering reliability element[J]. Journal of Safety Science and Technology, 2017, 13 (2): 85- 89
25 刘晗, 王健, 安实, 等 超立方体排队均衡的卫星消防站选址调度优化[J]. 交通运输系统工程与信息, 2018, 18 (2): 201- 207
LIU Han, WANG Jian, AN Shi, et al Satellite fire stations location and allocation model under the hypercube queuing equilibrium[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (2): 201- 207
26 王炜. 公路交通流车速-流量实用关系模型[J]. 东南大学学报: 自然科学版, 2003, 33(4): 109-113.
WANG Wei. Practical speed-flow relationship model of highway traffic-flow [J]. Journal of Southeast University: Natural Science Edition, 2003, 33(4): 109-113.
[1] 张琦,陈红,周继彪,张敏,郭璘,杨仁法. 道路开口对临近交叉口交通安全的影响[J]. 浙江大学学报(工学版), 2021, 55(4): 720-726.
[2] 赵晨馨,董红召,郝伟娜. 公交时分复用车道设置条件及交通临界模型[J]. 浙江大学学报(工学版), 2021, 55(4): 704-712.
[3] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[4] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[5] 马新卫,季彦婕,金雪,徐洋,曹睿明. 租赁自行车用户出行特征及方式的影响因素分析[J]. 浙江大学学报(工学版), 2020, 54(6): 1202-1209.
[6] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[7] 朱文韬,钱国敏,马东方,王殿海. 考虑路口上游停靠站影响的公交延误模型[J]. 浙江大学学报(工学版), 2020, 54(4): 796-803.
[8] 孙超,李孟晖,韩飞. 智慧公路多源数据下的交通出行演化模型[J]. 浙江大学学报(工学版), 2020, 54(3): 546-556.
[9] 田秀娟,于德新,周户星,邢雪,王世广. 基于改进Newman算法的动态控制子区划分[J]. 浙江大学学报(工学版), 2019, 53(5): 950-956.
[10] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[11] 倪玲霖, 张帅超, 陈喜群. 基于手机信号令数据的居民出行空间效应[J]. 浙江大学学报(工学版), 2017, 51(5): 887-895.
[12] 曲昭伟, 曹宁博, 陈永恒, 白乔文, 康萌, 陈明涛. 信号交叉口的行人信号提前建模[J]. 浙江大学学报(工学版), 2017, 51(3): 538-544.
[13] 王韩麒, 陈红, 冯微, 刘玮蔚. 基于CPT的异质通勤者多维出行决策模型[J]. 浙江大学学报(工学版), 2017, 51(2): 297-303.
[14] 王福建, 龚成宇, 马东方, 郭伟伟, 王殿海. 采用交通出行量数据的多点联动瓶颈控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 273-278.
[15] 于谦, 李铁柱, 任彦铭. 乘客载重量对柴油公交车尾气排放影响分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2009-2017.