Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1497-1504    DOI: 10.3785/j.issn.1008-973X.2020.08.007
机械工程     
基于H∞理论的滚珠丝杠进给系统滑模控制
李剑(),汤文成*()
东南大学 机械工程学院,江苏 南京 211189
Sliding mode control for ball screw drives based on H∞ theory
Jian LI(),Wen-cheng TANG*()
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
 全文: PDF(1331 KB)   HTML
摘要:

针对滚珠丝杠进给系统的动态特性,建立参数不确定的数学模型. 为了消除参数不确定的影响,设计满足H∞性能的积分滑模控制器. 针对存在的未知干扰,设计指数干扰观测器进行补偿. 分析结果表明,本研究的控制方法具有L2增益性能. 利用该方法在滚珠丝杠实验台上进行轨迹跟踪实验. 实验结果表明,当使用设计的控制器时,最大跟踪误差为16.85 μm;当使用设计的控制器加上指数干扰观测器时,最大跟踪误差为10.18 μm;在工作台增加25 kg质量块后,当使用设计的控制器加上干扰观测器时,最大跟踪误差为15.61 μm. 实验结果说明所设计的控制器具有较好的性能,并且干扰观测器能够提高控制精度. 与传统的比例-比例积分控制器的对比结果说明本研究的控制方法有较好的综合性能.

关键词: 滚珠丝杠滑模控制H∞理论不确定系统指数干扰观测器    
Abstract:

A mathematical model with uncertain parameters was established considering the dynamic characteristics of ball screw drives. A sliding mode controller with H∞ performance was designed to eliminate the influence of uncertainties. An exponential disturbance observer was designed to compensate the unknown disturbances of the system. The analyses prove that the control method has L2 gain performance. The trajectory tracking experiments were carried out on the experiment platform of ball screw drives. Results show that the maximum tracking error is 16.85 μm by using H∞ sliding mode controller and 10.18 μm by using H∞ sliding mode controller with the designed observer. After adding a 25 kg mass block on the table, the maximum tracking error is 15.61 μm by using the proposed controller with the designed observer. Results prove that the controller has good performance. The designed observer can improve the control performance. The proposed control method has good performance by comparison with a traditional proportion-proportion integral controller.

Key words: ball screw    sliding mode control    H∞ theory    uncertain system    exponential disturbance observer
收稿日期: 2019-07-15 出版日期: 2020-08-28
CLC:  TP 273  
基金资助: 国家自然科学基金资助项目(51675100);国家科技重大专项资助项目(2016ZX04004008-002)
通讯作者: 汤文成     E-mail: hellolij@163.com;tangwc@seu.edu.cn
作者简介: 李剑(1994—),男,硕士生,从事先进控制理论研究. orcid.org/0000-0001-9553-3317. E-mail: hellolij@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李剑
汤文成

引用本文:

李剑,汤文成. 基于H∞理论的滚珠丝杠进给系统滑模控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1497-1504.

Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1497

图 1  滚珠丝杠实验台
图 2  二自由度模型
图 3  工作台频率响应特性
图 4  HISMC控制系统框图
${ { {m_{\rm{1} } } } / {\left( { {\rm{V} } \cdot { {\rm{s} }^{\rm{2} } } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {m_{\rm{2} } } } / {\left( { {\rm{V} } \cdot { {\rm{s} }^{\rm{2} } } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${c / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {b_{\rm{1} } } } / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {b_{\rm{2} } } } / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${k / {\left( { {\rm{V} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$
1.3016 0.1484 5.3550 ${\rm{8} }{\rm{.085\;4} } \times {\rm{1} }{ {\rm{0} }^{ {\rm{ - 4} } } }$ 1.6103 ${\rm{4} }{\rm{.181\;4} } \times {\rm{1} }{ {\rm{0} }^{\rm{4} } }$
表 1  二自由度模型参数
图 5  轨迹跟踪实验参考轨迹
图 6  P-PI+VFF+AFF 轨迹跟踪实验结果
图 7  HISMC和EDO 轨迹跟踪实验结果
图 8  P-PI+VFF+AFF,HISMC和HISMC+EDO 轨迹跟踪实验结果对比
1 赵万华, 张俊, 刘辉, 等 数控机床精度评价新方法[J]. 中国工程科学, 2013, 15 (1): 93- 98
ZHAO Wan-hua, ZHANG Jun, LIU Hui, et al New evaluation method on the precision of NC machine tools[J]. Engineering Sciences, 2013, 15 (1): 93- 98
doi: 10.3969/j.issn.1009-1742.2013.01.018
2 卢秉恒, 赵万华, 张俊, 等 高速高加速下的进给系统机电耦合[J]. 机械工程学报, 2013, 49 (6): 2- 11
LU Bing-heng, ZHAO Wan-hua, ZHANG Jun, et al Electromechanical coupling in the feed system with high speed and high acceleration[J]. Journal of Mechanical Engineering, 2013, 49 (6): 2- 11
doi: 10.3901/JME.2013.06.002
3 ERKORKMAZ K, KAMALZADEH A High bandwidth control of ball screw drives[J]. CIRP Annals-Manufacturing Technology, 2006, 55 (1): 393- 398
doi: 10.1016/S0007-8506(07)60443-0
4 SUN Z, PRITSCHOW G, LECHLER A Enhancement of feed drive dynamics using additional table speed feedback[J]. CIRP Annals-Manufacturing Technology, 2016, 65 (1): 357- 360
doi: 10.1016/j.cirp.2016.04.099
5 SUN Z, ZAHN P, VERL A, et al A new control principle to increase the bandwidth of feed drives with large inertia ratio[J]. International Journal of Advanced Manufacturing Technology, 2017, 91 (5?8): 1747- 1752
doi: 10.1007/s00170-016-9895-3
6 GORDON D J, ERKORKMAZ K Accurate control of ball screw drives using poleplacement vibration damping and a novel trajectory prefilter[J]. Precision Engineering, 2013, 37 (2): 308- 322
doi: 10.1016/j.precisioneng.2012.09.009
7 QIAN R R, LUO M Z, ZHAO J H, et al. Novel sliding mode control for ball screw servo system [C]// International Conference on Mechanical, Industrial, and Manufacturing Technologies. Cape Town: MATEC Web of Conferences, 2016, 54: 03007.
8 DONG L, TANG W C Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances[J]. ISA Transactions, 2014, 53 (1): 110- 116
doi: 10.1016/j.isatra.2013.08.009
9 UTKIN V, SHI J X. Integral sliding mode in systems operating under uncertainty conditions [C]// Proceedings of the 35th IEEE Conference on Decision and Control. Lobe: IEEE, 1996: 4591-4596.
10 BAO D F, TANG W C, DONG L Integral sliding mode control for flexible ball screw drives with matched and mismatched uncertainties and disturbances[J]. Journal of Central South University, 2017, 24 (9): 1992- 2000
doi: 10.1007/s11771-017-3608-4
11 王坤, 王建美, 王芳, 等 非匹配不确定系统的滑模控制及在电机控制中的应用[J]. 控制理论及应用, 2019, 36 (1): 143- 150
WANG Kun, WANG Jian-mei, WANG Fang, et al Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J]. Control Theory and Applications, 2019, 36 (1): 143- 150
12 WANG N, LIN W Y Robust tracking control of AC servo system including a ball screw[J]. Neurocomputing, 2016, 179: 110- 117
doi: 10.1016/j.neucom.2015.11.073
13 LIAN J, ZHAO J Robust H∞ control of uncertain switched systems: a sliding mode control design[J]. Acta Automatica Sinica, 2009, 35 (7): 965- 970
14 TOKAT S, EKSIN I, GUZELKAYA M Linear time-varying sliding surface design based on co-ordinate transformation for high-order systems[J]. Transactions of the Institute of Measurement and Control, 2009, 31 (1): 51- 70
doi: 10.1177/0142331208090672
15 TOKAT S, EKSIN I, GUZELKAYA M A new design method for sliding mode controllers using a linear time-varying sliding surface[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2002, 216 (6): 455- 466
doi: 10.1177/095965180221600602
16 YANG J, LI S H, YU X H Sliding mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (1): 160- 169
doi: 10.1109/TIE.2012.2183841
17 董亮. 高速滚珠丝杠进给系统动态特性与控制技术研究[D]. 南京: 东南大学, 2015.
DONG Liang. System dynamics and precision control of high speed ball screw drives [D]. Nanjing: Southeast University, 2015.
18 CHOI H H LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems[J]. IEEE Transactions on Automatic Control, 2007, 52 (4): 736- 742
doi: 10.1109/TAC.2007.894543
19 KIM K S, PARK Y, OH S H Designing robust sliding hyperplanes for parametric uncertain systems: a Riccati approach[J]. Automatica, 2000, 36 (7): 1041- 1048
doi: 10.1016/S0005-1098(00)00014-5
20 姜伟, 王宏力, 陆敬辉, 等 连续时间多胞线性变参数系统变增益H∞/H2输出反馈控制 [J]. 控制理论与应用, 2016, 33 (9): 1225- 1235
JIANG Wei, WANG Hong-li, LU Jing-hui, et al Gain-scheduled H∞/H2 output feedback controller synthesis for continuous-time polytopic linear parameter varying systems [J]. Control Theory and Applications, 2016, 33 (9): 1225- 1235
doi: 10.7641/CTA.2016.50768
21 CHEN W H, BALLANCE D J, GAWEHROP P J, et al A nonlinear disturbance observer for robotic manipulators[J]. IEEE on Industrial Electronics, 2000, 47 (4): 932- 938
doi: 10.1109/41.857974
[1] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[2] 朱艺锋,吴党建,白冰洋,岳豪. 单相五电平脉冲整流器滑模比例积分谐振控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1578-1586.
[3] 陈朝萌,周晓军,杨辰龙,吕浩亮,魏杰超. 高速电驱动履带车辆紧急制动控制策略[J]. 浙江大学学报(工学版), 2020, 54(3): 442-449.
[4] 吴爱国,吴绍华,董娜. 机械臂非奇异快速终端滑模模糊控制[J]. 浙江大学学报(工学版), 2019, 53(5): 862-871.
[5] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[6] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[7] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[8] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[9] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[10] 王飞, 管成, 肖扬, 李威. 挖掘机动臂势能回收系统的压力滑模控制[J]. 浙江大学学报(工学版), 2016, 50(2): 201-208.
[11] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[12] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.
[13] 钱鹏飞, 陶国良, 孟德远, 钟伟, 班伟, 朱晓. 电控气动离合器执行器滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2014, 48(6): 1102-1106.
[14] 全宇, 年珩. 非理想电网下双馈感应发电机谐振滑模控制[J]. J4, 2014, 48(4): 575-580.
[15] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.