Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1955-1965    DOI: 10.3785/j.issn.1008-973X.2019.10.013
土木工程     
基于傅里叶近似法的S-RM细观损伤过程研究
章涵(),胡新丽*(),吴爽爽
中国地质大学(武汉) 工程学院,湖北 武汉 430074
Damage evolution of soil-rock mixture based on Fourier series approximations method
Han ZHANG(),Xin-li HU*(),Shuang-shuang WU
Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(1790 KB)   HTML
摘要:

为了明确土石混合体(S-RM)的细观损伤演化过程,基于现场水平推剪试验,采用离散元数值模拟方法,开展S-RM水平推剪数值实验研究,分析S-RM的力学特性和细观损伤演化特征. 基于傅里叶近似法,提出微裂纹各向异性定量评价方法. 根据S-RM变形破坏过程中微裂纹各向异性演化特征,划分了S-RM水平推剪细观损伤阶段,通过分析各细观损伤阶段的裂纹扩展特征及发展规律,揭示了S-RM剪切滑动面形成机理. 试验结果表明,微裂纹各向异性程度随着剪切位移的增加而增强,当主裂纹形成后不再有明显变化,微裂纹主要分布在0°~45°与135°~180°;微裂纹的产生主要由于颗粒间的拉应力导致,拉裂纹的各向异性程度明显大于剪切裂纹;土体中微裂纹的贯通导致多条宏观裂纹的形成,由于块石的翻转宏观裂纹逐渐扩展形成一条绕石宏观主裂纹,S-RM沿着主裂纹滑移形成绕石剪切滑动面;滑动面的倾角为34°,与主裂纹倾角和微裂纹在0°~90°的平均角度一致.

关键词: 土石混合体(S-RM)傅里叶近似法水平推剪试验离散元方法微裂纹细观损伤演化过程    
Abstract:

The numerical tests of soil-rock mixture (S-RM) were performed based on the in-suit horizontal push-shear test (HPST) in order to clarify the meso-damage evolution of S-RM. The mechanical properties and the meso-damage evolution characteristics of S-RM were analyzed by using discrete element method. A quantitative evaluation method for evaluating the anisotropy of S-RM meso-cracks was proposed based on the Fourier series approximation method. The meso-damage stages of HPST of S-RM were divided based on the anisotropy evolution of meso-cracks in the process of deformation and destruction of S-RM. The formation mechanism of S-RM shear surface was analyzed by analyzing the growth and evolution of cracks in different meso-damage stages. Results showed that the anisotropy degree of meso-cracks increased with the increment of shear displacement, but it has no obvious change any more after the formation of principal crack. The dips of meso-cracks were mainly distributed in 0°-45° and 135°-180°. The generation of meso-cracks was mainly caused by the tensile stress between particles. The anisotropy degree of tensile meso-cracks was larger than that of shear meso-cracks. The connections of meso-cracks in the soil gave rise to the formation of multiple macro-cracks. The macro-cracks developed and formed a round-blocks principal crack because of the rotation of rock blocks. The S-RM slide along the principal cracked to form a round-blocks shear slide surface. The dip of slide surface was 34°, same as the dip of principal crack and the average dip of meso-cracks in the range of 0°-90°.

Key words: soil-rock mixture (S-RM)    Fourier series approximations method    horizontal push-shear test    discrete element method    meso-crack    meso-damage evolution
收稿日期: 2018-07-04 出版日期: 2019-09-30
CLC:  TU 413  
通讯作者: 胡新丽     E-mail: zhanghan@cug.edu.cn;huxinli@cug.edu.cn
作者简介: 章涵(1992—),男,博士生,从事岩土工程数值模拟与地质灾害防治的研究. orcid.org/0000-0003-4804-3547. E-mail: zhanghan@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
章涵
胡新丽
吴爽爽

引用本文:

章涵,胡新丽,吴爽爽. 基于傅里叶近似法的S-RM细观损伤过程研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1955-1965.

Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.013        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1955

图 1  现场S-RM
图 2  现场水平推剪试验装置布置图
图 3  水平推剪试验剪切面
编号 wr/% ww/% c/kPa φ/(°)
1 57.05 12.11 19.3 61.1
2 45.60 12.10 21.2 55.6
3 37.46 10.66 23.5 51.0
4 52.40 20.50 9.7 53.5
5 42.34 19.49 11.7 46.6
6 34.52 20.37 12.5 41.1
表 1  S-RM水平推剪试验结果
图 4  不同粒径典型灰岩块石
图 5  S-RM累计级配曲线
图 6  S-RM水平推剪数值模型图
岩土体 dblock/mm 接触模型 Dp/mm E/MPa Ra ρ/(kg·m?3 Sn/MPa Ss/MPa Eb/MPa Rb f
块石 10~120 平行黏结 4 200 1.0 2 700 24 24 200 1.0 1.5
块石 5~10 线性接触 5~10 200 1.0 2 700 ? ? ? ? 1.5
土体 ? 接触黏结 2~5 10 1.0 2 500 0.17 0.17 ? ? 0.5
表 2  岩土体细观参数
图 7  微裂纹中心位置与倾角示意图
图 8  微裂纹倾角分布图及拟合曲线
图 9  水平推力演化过程
图 10  水平推剪滑动面
图 11  微裂纹/能量消耗/孔隙率演化过程
图 12  微裂纹各向异性演化阶段
图 13  不同阶段微裂纹各向异性特征
图 14  拉裂纹与剪切裂纹演化过程
图 15  不同倾角区间裂纹发展过程
图 16  微裂纹平均倾角演化规律
图 17  宏观裂纹发展过程
1 LINDQUIST E S. The strength and deformation properties of mélange [D]. Berkeley: University of California, 1994.
2 SONMEZ H, GOKCEOGLU C, MEDLEY E W, et al Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, (43): 554- 561
3 董云 土石混合料强度特性的试验研究[J]. 岩土力学, 2007, 28 (6): 1269- 1274
DONG Yun Experimental study on intensity character of rock-soil aggregate mixture[J]. Rock and Soil Mechanics, 2007, 28 (6): 1269- 1274
doi: 10.3969/j.issn.1000-7598.2007.06.040
4 王光进, 杨春和, 张超, 等 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30 (12): 3649- 3654
WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30 (12): 3649- 3654
doi: 10.3969/j.issn.1000-7598.2009.12.015
5 邓华锋, 原先凡, 李建林, 等 S-RM直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32 (增2): 4065- 4072
DENG Hua-feng, YUAN Xian-fan, LI Jian-lin, et al Research on failure characteristics and determination method for shear strength of earth-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (增2): 4065- 4072
6 刘新荣, 涂义亮, 王林枫, 等 S-RM的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36 (09): 2260- 2274
LIU Xin-rong, TU Yi-liang, WANG Lin-feng, et al Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (09): 2260- 2274
7 油新华, 汤劲松 S-RM野外水平推剪试验研究[J]. 岩石力学与工程学报, 2002, 21 (10): 1537- 1540
YOU Xin-hua, TANG Jin-song Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (10): 1537- 1540
doi: 10.3321/j.issn:1000-6915.2002.10.021
8 LI X, LIAO Q L, HE J M In-situ tests and a stochastic structural model of rock andsoil aggregate in the three Gorges Reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (3): 702- 707
9 徐文杰, 胡瑞林, 谭儒蛟, 等 虎跳峡龙蟠右岸S-RM野外试验研究[J]. 岩石力学与工程学报, 2006, 25 (6): 1270- 1277
XU Wen-jie, HU Rui-lin, TAN Ru-jiao, et al Study on field test of rock-soil aggregate on right bank of longpan in tiger-leaping gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (6): 1270- 1277
doi: 10.3321/j.issn:1000-6915.2006.06.028
10 张年学, 李晓, 赫建明, 等 无法向荷载推剪试验的解析与应用[J]. 岩土力学, 2010, 31 (03): 863- 869
ZHANG Nian-xue, LI Xiao, HE Jian-ming, et al Analysis of push shear test without normal loading and its application[J]. Rock and Soil Mechanics, 2010, 31 (03): 863- 869
doi: 10.3969/j.issn.1000-7598.2010.03.035
11 COLI N, BERRY P, BOLDINI D In situ non-conventional shear tests for the mechanical characterisation of a bimrock (BimTest)[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, (48): 95- 102
12 张晓健, 龚辉, 艾传井, 等 泥质页岩-粉质黏土土石混合填料原位水平推剪试验研究[J]. 水文地质工程地质, 2017, 44 (03): 79- 85
ZHANG Xiao-jian, GONG Hui, AI Chuan-jing, et al Research on horizontal push-shear in-situ test of pelitic shale-silty clay mixture[J]. Hydrogeology and Engineering Geology, 2017, 44 (03): 79- 85
13 ALESSANDRO G, CLAUDIO R, TATIANA R Characterization and DEM modeling of shear zones at a large dam foundation[J]. International Journal of Geomechanics, 2012, 12 (6): 648- 664
doi: 10.1061/(ASCE)GM.1943-5622.0000220
14 金磊, 曾亚武, 李欢, 等 基于不规则颗粒离散元的S-RM大三轴数值模拟[J]. 岩土工程学报, 2015, 37 (05): 829- 838
JIN Lei, ZENG Ya-wu, LI Huan, et al Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (05): 829- 838
15 XU W J, HU L M, GAO W Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 166- 178
doi: 10.1016/j.ijrmms.2016.04.007
16 XU W J, WANG S, ZHANG H Y, et al Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 4 (86): 141- 156
17 徐文杰, 王识 基于真实块石形态的S-RM细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报, 2016, 35 (10): 2152- 2160
XU Wen-jie, WANG Shi Meso-mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (10): 2152- 2160
18 ZHANG H Y, XU W J, YU Y Z Numerical analysis of soil-rock mixture’s meso-mechanics based on biaxial test[J]. Journal of Central South University, 2016, (23): 685- 700
19 何春灿, 胡新丽, 龚辉, 等 基于软硬石模板库的S-RM细观损伤与力学特性分析[J]. 岩土力学, 2016, 37 (10): 2993- 3002
HE Chun-can, HU Xin-li, GONG Hui, et al Analysis of mesoscopic damage and mechanical behaviors of soil-rock mixture based on template database of soft and hard rocks[J]. Rock and Soil Mechanics, 2016, 37 (10): 2993- 3002
20 金磊, 曾亚武 S-RM宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37 (06): 1- 10
JIN Lei, ZENG Ya-wu Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3-D DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (06): 1- 10
21 林宗元. 岩土工程试验监测手册[M]. 北京: 中国建筑工业出版社, 2005.
22 BATHURST R J. A study of stress and anisotropy in idealized granular assemblies [D]. Canada: Queen's University at Kingston, 1985.
23 ROTHENBURG L, BATHURST R J Analytical study of induced anisotropy in idealized granular materials[J]. Geotechnique, 1989, 39 (4): 601- 614
doi: 10.1680/geot.1989.39.4.601
[1] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.