机械与能源工程 |
|
|
|
|
基于模型预测控制的仿人机器人实时步态优化 |
丁加涛( ),何杰,李林芷,肖晓晖*( ) |
武汉大学 动力与机械学院,湖北 武汉 430072 |
|
Real-time walking pattern optimization for humanoid robot based on model predictive control |
Jia-tao DING( ),Jie HE,Lin-zhi LI,Xiao-hui XIAO*( ) |
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China |
引用本文:
丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.
Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.001
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1843
|
1 |
颜云辉, 徐靖, 陆志国, 等 仿人服务机器人发展与研究现状[J]. 机器人, 2017, 39 (4): 551- 564 YAN Yun-hui, XU Jing, LU Zhi-guo, et al Development and research status of humanoid service robots[J]. Robot, 2017, 39 (4): 551- 564
|
2 |
张继文, 刘莉, 陈恳 面向全方位双足步行跟随的路径规划[J]. 自动化学报, 2016, 42 (2): 189- 201 ZHANG Ji-wen, LIU Li, CHEN Ken Omni-directional bipedal walking path planning[J]. Acta Automatica Sinica, 2016, 42 (2): 189- 201
|
3 |
孙广彬, 王宏, 陆志国, 等 仿人足底肌电特征的机器人行走规划[J]. 自动化学报, 2015, 41 (5): 874- 884 SUN Guang-bin, WANG Hong, LU Zhi-guo, et al Humanoid walking planning based on EMG from human foot-bottom[J]. Acta Automatica Sinica, 2015, 41 (5): 874- 884
|
4 |
易江, 朱秋国, 吴俊, 等 基于最优控制的仿人机器人行走振动抑制[J]. 机器人, 2018, 40 (2): 129- 135 YI Jiang, ZHU Qiu-guo, WU Jun, et al Walking vibration suppression for humanoid robot based on optimal control[J]. Robot, 2018, 40 (2): 129- 135
|
5 |
NASHNER L M, MCCOLLUM G The organization of human postural movements: a formal basis and experimental synthesis[J]. Behavioral and Brain Sciences, 1985, 8 (1): 135- 150
doi: 10.1017/S0140525X00020008
|
6 |
DIEDAM H, DIMITROV D, WIEBER P B, et al. Online walking gait generation with adaptive foot positioning through linear model predictive control [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 1121-1126.
|
7 |
FU C. Perturbation recovery of biped walking by updating the footstep [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 2509-2514.
|
8 |
张继文, 刘莉, 陈恳 基于AHRS反馈的仿人机器人步行稳定控制[J]. 清华大学学报: 自然科学版, 2016, 56 (8): 818- 823 ZHANG JI-wen, LIU Li, CHEN Ken Stabilizing control of humanoids' walking based on AHRS feedback[J]. Journal of Tsinghua University: Science and Technology, 2016, 56 (8): 818- 823
|
9 |
ZHANG L, FU C Predicting foot placement for balance through a simple model with swing leg dynamics[J]. Journal of Biomechanics, 2018, 77 (17): 155- 162
|
10 |
YU Z, ZHOU Q, CHEN X, et al Disturbance rejection for biped walking using zero-moment point variation based on body acceleration[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (4): 2265- 2276
|
11 |
DING J, WANG Y, YANG M, et al Walking stabilization control for humanoid robots on unknown slope based on walking sequences adjustment[J]. Journal of Intelligent and Robotic Systems, 2018, 90 (3/4): 323- 338
|
12 |
PARK S, HORAK F B, KUO A D Postural feedback responses scale with biomechanical constraints in human standing[J]. Experimental Brain Research, 2004, 154 (4): 417- 427
doi: 10.1007/s00221-003-1674-3
|
13 |
KUDOH S, KOMURA T, IKEUCHI K. Stepping motion for a human-like character to maintain balance against large perturbations [C] // IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2661-2666.
|
14 |
CHEN X, YU Z, ZHANG W, et al Bioinspired control of walking with toe-off, heel-strike, and disturbance rejection for a biped robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 7962- 7971
doi: 10.1109/TIE.2017.2698361
|
15 |
LI C, XIONG R, ZHU Q, et al Push recovery for the standing under-actuated bipedal robot using the hip strategy[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16 (7): 579- 593
doi: 10.1631/FITEE.14a0230
|
16 |
席裕庚, 李德伟, 林姝 模型预测控制: 现状与挑战[J]. 自动化学报, 2013, 39 (3): 222- 236 XI Yu-geng, LI De-wei, LIN Shu Model predictive control: status and challenges[J]. Acta Automatica Sinica, 2013, 39 (3): 222- 236
|
17 |
AFTAB Z, ROBERT T, WIEBER P B. Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme [C] // IEEE-RAS International Conference on Humanoid Robots. Osaka: IEEE, 2012: 159-164.
|
18 |
LACK J. Integrating the effects of angular momentum and changing center of mass height in bipedal locomotion planning [C] // IEEE-RAS International Conference on Humanoid Robots. Seoul: IEEE, 2015: 651-656.
|
19 |
SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, SHARIAT-PANAHI M. Robust bipedal locomotion control based on model predictive control and divergent component of motion [C] // IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3505-3510.
|
20 |
KAJITA S, KANEHIRO F, KANEKO K, et al. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui: IEEE, 2001: 239-246.
|
21 |
PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: a step toward humanoid push recovery [C] // IEEE-RAS International Conference on Humanoid Robots. Genova: IEEE, 2006: 200-207.
|
22 |
VUKOBRATOVI? M, BOROVAC B Zero-moment point-thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1 (01): 157- 173
doi: 10.1142/S0219843604000083
|
23 |
陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013.
|
24 |
HERDT A, PERRIN N, WIEBER P B. Walking without thinking about it [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 190-195.
|
25 |
NAVEAU M, KUDRUSS M, STASSE O, et al A reactive walking pattern generator based on nonlinear model predictive control[J]. IEEE Robotics and Automation Letters, 2017, 2 (1): 10- 17
doi: 10.1109/LRA.2016.2518739
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|