Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1835-1842    DOI: 10.3785/j.issn.1008-973X.2019.09.023
环境工程     
饮用水厂排泥水及污泥中全氟化合物分布特征
孙敏,鲍俊信,徐蓓,周浩
河海大学 浅水湖泊综合治理与资源开发教育部重点实验室 环境学院,江苏 南京, 210098
Distribution characteristics of perfluorinated compounds in sludge wastewater and sludge from drinking water treamtment plant
Min SUN,Jun-xin BAO,Bei XU,Hao ZHOU
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
 全文: PDF(1071 KB)   HTML
摘要:

针对饮用水中全氟化合物(PFCs)存在的潜在水质安全风险,为饮用水厂控制PFCs提供数据支持,探究长江南京段原水和饮用水厂常规处理工艺过程水、排泥水中5种PFCs的质量浓度和污泥中5种PFCs的质量分数分布特征,分析PFCs在絮凝沉淀、过滤工艺中的物料平衡,排泥水和污泥间的PFCs分配规律及阳离子交换量对污泥中PFCs分布影响. 结果表明:饮用水厂的原水、过程水和排泥水中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的质量浓度最高,污泥中质量分数最高的为全氟壬酸(PFNA)、全氟癸酸(PFDA)和PFOS. 全氟丁酸(PFBA)、PFOA、PFNA和PFDA的泥-水分配系数与有机碳质量分数正相关,官能团是影响PFOS在泥-水间的分配规律的因素之一. 对于絮凝池和沉淀池前段污泥,粒径越大,PFCs质量分数越高;对于沉淀池中、后段和V型滤池污泥,粒径越小,PFCs质量分数越高;PFCs的质量分数与污泥中阳离子交换量(CEC)显著正相关.

关键词: 饮用水厂(DWTP)全氟化合物(PFCs)排泥水污泥物料平衡泥-水分配系数    
Abstract:

The distribution characteristics of five perfluorinated compounds (PFCs) in Yangtze River raw water, process water, sludge wastewater and sludge in drinking water treatment plant (DWTP) were quantified, in view of the potential water quality safety risks of PFCs in drinking water, and to provide data support for DWTP controlled PFCs. Material balance of PFCs in flocculation, settling and filtration process was analyzed; the PFCs distribution between the sludge wastewater and sludge and the impact of cation exchange capacity (CEC) on PFCs distribution were analyzed. Results show that perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are mainly distributed in raw water, process water and sludge wastewater in DWTP, while in sludge perfluoronnonanoic acid (PFNA), perfluorodecanoic acid (PFDA) and PFOS are the main PFC contaminant. The sludge-water partition coefficient is positively correlated with the organic carbon fraction for perfluorabutyric acid (PFBA), PFOA, PFNA and PFDA; and the functional group is one of the factors affecting the distribution of PFOS. The PFCs mass fraction is higher in large size fractions from the flocculation tank and front of settling tank, while it is lower in large size fractions from the middle and rear sections of the settling tank and V-filter. A significantly positive correlation between PFCs mass fraction and CEC in sludge is observed.

Key words: drinking water treatment plant (DWTP)    perfluorinated compounds (PFCs)    sludge wastewater    sludge    material balance    sludge-water partition coefficient
收稿日期: 2018-07-13 出版日期: 2019-09-12
CLC:  TU 991  
作者简介: 孙敏(1969—),女,副教授,从事水处理技术研究. orcid.org/0000-0003-1753-7165. E-mail: sunm@hhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙敏
鲍俊信
徐蓓
周浩

引用本文:

孙敏,鲍俊信,徐蓓,周浩. 饮用水厂排泥水及污泥中全氟化合物分布特征[J]. 浙江大学学报(工学版), 2019, 53(9): 1835-1842.

Min SUN,Jun-xin BAO,Bei XU,Hao ZHOU. Distribution characteristics of perfluorinated compounds in sludge wastewater and sludge from drinking water treamtment plant. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1835-1842.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.023        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1835

污泥样品 woc / % R0 / % wmetal / 10?31 w(CEC)/(cmol·kg?1)
>250 μm 63~250 μm <63 μm Al Fe Ca Mg
絮凝池 全粒径 8.39 19 19 62 79.67 44.21 20.06 11.69 79.24
>250 μm 11.15 94.79 48.58 17.06 12.12 95.32
63~250 μm 7.70 82.17 44.79 18.59 12.01 73.96
<63 μm 6.33 68.38 40.43 23.45 12.55 58.84
沉淀池 全粒径 9.01 15 19 66 78.58 43.63 20.87 12.15 82.60
>250 μm 6.74 96.25 48.67 15.08 11.62 60.04
63~250 μm 7.29 81.33 44.38 18.89 12.03 71.32
<63 μm 10.07 61.13 39.64 23.29 11.75 88.00
V型滤池 全粒径 7.98 24 76 75.33 40.63 15.75 10.49 67.08
63~250 μm 6.88 88.25 40.77 14.29 9.97 57.72
<63 μm 9.39 68.05 40.61 18.11 10.92 85.56
表 1  饮用水厂污泥的基本理化性质
图 1  饮用水厂(DWTP)原水、过程水、排泥水中PFCs的质量浓度和污泥中PFCs的质量分数
图 2  絮凝沉淀和过滤工艺中PFCs的物料平衡图
图 3  沉淀池和V型滤池中PFCs的物料平衡
排泥构筑物 R3 / % R4 / %
注:括号内为实际计算取值.
折板絮凝池 1.0~2.5 (2.5) 1.76~6.69 (3.0)
平流式沉淀池 2.0~5.5 (5.5) 0.16~2.27 (1.5)
V型滤池 3.0~6.0 (6.0) 0.04~0.27 (0.2)
表 2  饮用水厂各排泥构筑物的排泥水参数
PFCs η1 / % η2 / % PFCs η1 / % η2 / %
PFBA 98.41 99.45 PFDA 100.75 99.75
PFOA 98.05 99.94 PFOS 98.14 99.70
PFNA 99.02 99.78
表 3  絮凝沉淀和过滤工艺中PFCs的平衡率
图 4  污泥不同粒径组分中PFCs的质量分数
PFCs lg Kd lg Koc
PFBA 1.10±0.27 2.07±0.32
PFOA 1.22±0.16 2.23±0.16
PFNA 2.01±0.15 3.08±0.07
PFDA 2.29±0.23 3.36±0.14
PFOS 1.50±0.12 2.56±0.06
表 4  PFCs在污泥和排泥水间的分配系数
图 5  有机碳质量分数与PFCs水-污泥分配系数的相关性
图 6  污泥各组分中总PFCs质量分数与阳离子交换量(CEC)之间的相关性
相关性 w (PFBA) w (PFOA) w (PFNA) w (PFDA) w (PFOS) ws
注:**表示在0.01水平上显著相关;*表示在0.05水平上显著相关.
w (CEC) ?0.184 0.356 0.709** 0796** 0.531* 0.851**
表 5  饮用水厂污泥阳离子交换量(CEC)与PFCs质量分数的相关性分析
1 MARTIN J W, SMITHWICK M M, BRAUNE B M, et al Identification of long-chain perfluorinated acids in biota from the Canadian Arctic[J]. Environmental Science and Technology, 2004, 38 (2): 373- 380
doi: 10.1021/es034727+
2 PREVCDOUROS K, COUSINS I T, BUCK R C, et al Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science and Technology, 2006, 40 (1): 32- 44
doi: 10.1021/es0512475
3 YAMASHITA N, KANNAN K, TANIYASU S, et al A global survey of perfluorinated acids in oceans[J]. Marine Pollution Bulletin, 2005, 51 (8-21): 658- 668
4 NGUYEN H L, CHO C R, KANNAN K, et al A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: distributions and bioconcentration profiles[J]. Journal of Hazardous Materials, 2016, 323 (Pt A): 116- 127
5 YANG L, ZHU L, LIU Z Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China[J]. Chemosphere, 2011, 83 (6): 806- 814
doi: 10.1016/j.chemosphere.2011.02.075
6 ZHAO X, XIA X, ZHANG S, et al Spatial and vertical variations of perfluoroalkyl substances in sediments of the Haihe River, China[J]. Journal of Enviromental Sciences, 2014, 26 (8): 1557- 1566
7 BAO J, LIU W, LIU L, et al Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China[J]. Chemosphere, 2010, 80 (2): 123- 130
doi: 10.1016/j.chemosphere.2010.04.008
8 周浩, 孙敏 净水厂中全氟化合物分布特征及UV/SO32-[J]. 中国给水排水, 2017, 33 (19): 6- 10
ZHOU Hao, SUN Min Distribution of perfluorinated compounds in water supply plant and its reductive degradation by UV/SO32-[J]. China Water and Wastewater, 2017, 33 (19): 6- 10
9 张鸿, 陈清武, 王鑫璇, 等 自来水处理工艺对溶解相中全氟化合物残留的影响[J]. 环境科学, 2013, 34 (9): 3467- 3473
ZHANG Hong, CHEN Qing-wu, WANG Xin-xuan, et al Influence of tap water treatment on perfluorinated compounds residue in the dissolved phase[J]. Environmental Science, 2013, 34 (9): 3467- 3473
10 许青. 净水厂排泥水安全回用消毒技术研究[D]. 广州: 广州大学, 2008: 16-23.
XU Qing. Study on safety reuse and disinfection technology of sludge water in water supply plant [D]. Guangzhou: Guangzhou University, 2008: 16-23.
11 陈停. 净水厂生产废水回用强化低浊水混凝及水质安全性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 8-12.
CHEN Ting. Research on drinking water plant (DWP) streams recycle for strengthen of low turbidity water coagulation efficiency and water quality safety [D]. Harbin: Harbin Institute of Technology, 2017: 8-12.
12 LU Z, SONG L, ZHAO Z, et al Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China[J]. Chemosphere, 2015, 119: 820- 827
doi: 10.1016/j.chemosphere.2014.08.045
13 魏立娥. 双台子河口水体全氟化合物污染分布及风险评估研究[D]. 大连: 大连海事大学, 2015: 3-5.
WEI Li-e. Study on pollution distribution and risk assessment of perfluorinated compounds in Shuangtaizi estuary[D]. Dalian: Dalian Maritime University, 2015: 3-5.
14 周华, 陈卫, 孙敏, 等 南京城市给水厂排泥水节水潜力分析[J]. 给水排水, 2009, 35 (11): 18- 21
ZHOU Hua, CHEN Wei, SUN Min, et al Analysis of sludge disposal wastewater saving potential in Nanjing water plant[J]. Water and Wastewater Engineering, 2009, 35 (11): 18- 21
doi: 10.3321/j.issn:1000-4602.2009.11.006
15 DENG S, ZHOU Q, YU G, et al Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation[J]. Water Research, 2011, 45 (4): 1774- 80
doi: 10.1016/j.watres.2010.11.029
16 孙敏, 周园 净水厂污泥中多环芳烃和金属的分布特征[J]. 中南大学学报: 自然科学版, 2015, 46 (1): 366- 371
SUN Min, ZHOU Yuan Distribution characteristics of polycyclic aromatic hydrocarbons and metal in sludge from drinking water plant[J]. Journal of Central South University: Science and Technology, 2015, 46 (1): 366- 371
doi: 10.11817/j.issn.1672-7207.2015.01.049
17 DING G, XUE H, ZHANG J, et al Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 2017, 127: 285- 288
18 EMANUELA P, GEMMA C, LLORCA M, et al Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain)[J]. Science of the Total Environment, 2017, 607-608: 933- 943
doi: 10.1016/j.scitotenv.2017.07.025
19 ZHANG Y, MENG W, GUO C, et al Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China[J]. Chemosphere, 2012, 88 (11): 1292- 1299
doi: 10.1016/j.chemosphere.2012.03.103
20 ROOS P H, ANGERER J, DIETER H, et al Perfluorinated compounds (PFC) hit the headlines: meeting report on a satellite symposium of the annual meeting of the german society of toxicology[J]. Archives of Toxicology, 2008, 82 (1): 57- 59
doi: 10.1007/s00204-007-0225-2
21 孙敏, 周华, 袁哲, 等 城市给水厂排泥水的减量化试验研究[J]. 中国给水排水, 2010, 26 (9): 1- 4
SUN Min, ZHOU Hua, YUAN Zhe, et al Study on reduction of sludge water in urban water treatment plants[J]. China Water and Wastewater, 2010, 26 (9): 1- 4
22 ZHAO L, ZHU L, YANG L, et al Distribution and desorption of perfluorinated compounds in fractionated sediments[J]. Chemosphere, 2012, 88 (11): 1390- 1397
doi: 10.1016/j.chemosphere.2012.05.062
23 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009: 58-59.
24 PAN G, YOU C Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary[J]. Environmental Pollution, 2010, 158 (5): 1363- 1367
doi: 10.1016/j.envpol.2010.01.011
25 ZHANG R, YAN W, JING C Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components[J]. Journal of Environmental Sciences, 2015, 29 (3): 131- 138
26 PAN G, ZHOU Q, LUAN X, et al Distribution of perfluorinated compounds in Lake Taihu (China): impact to human health and water standards[J]. Science of the Total Environment, 2014, 487 (1): 778- 784
27 JEON J, KANNAN K, LIM B J, et al Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles[J]. Journal of Environmental Monitoring, 2011, 13 (6): 1803- 1810
doi: 10.1039/c0em00791a
28 HIGGINS C P, LUTHY R G Modeling sorption of anionic surfactants onto sediment materials: an a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates[J]. Environmental Science and Technology, 2007, 41 (9): 3254- 3261
doi: 10.1021/es062449j
29 HUGO C P, MALIN U, AHRENS L, et al Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon-effect of cation composition and pH[J]. Chemosphere, 2018, 207: 183- 191
doi: 10.1016/j.chemosphere.2018.05.012
30 YOU C, JIA C, PAN G Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface[J]. Environmental Pollution, 2010, 158 (5): 1343- 1347
doi: 10.1016/j.envpol.2010.01.009
31 AHRENS L, TANIYASU S, YEUNG L W, et al Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan[J]. Chemosphere, 2010, 79 (3): 266- 272
doi: 10.1016/j.chemosphere.2010.01.045
[1] 徐宇峰, 王让, 唐锋兵, 林佳琪, 张炜, 李思敏. 分配比对分段进水A2/O工艺脱氮除磷的影响[J]. 浙江大学学报(工学版), 2018, 52(4): 761-768.
[2] 杨洁, 刘天璐, 毛飞燕, 黄群星, 林炳丞, 池涌. 微乳液法脱除含油污泥中的乳化水[J]. 浙江大学学报(工学版), 2017, 51(2): 370-377.
[3] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报(工学版), 2016, 50(2): 327-332.
[4] 毛华臻, 王飞, 毛飞燕, 池涌, 陆胜勇, 岑可法. 水热处理对污泥水分分布的影响[J]. 浙江大学学报(工学版), 2016, 50(12): 2283-2288.
[5] 陈彤, 詹明秀, 林晓青, 李晓东, 陆胜勇, 严建华. 特定污泥干化过程中二恶英抑制气体排放特性[J]. 浙江大学学报(工学版), 2015, 49(2): 322-329.
[6] 洪晨,邢奕,王志强,司艳晓,周亮. 不同pH下表面活性剂对污泥脱水性能的影响[J]. 浙江大学学报(工学版), 2014, 48(5): 850-857.
[7] 邵志伟, 黄亚继, 张强, 刘培刚, 严玉朋. O2/CO2气氛下污泥与烟煤混合燃烧特性[J]. 浙江大学学报(工学版), 2014, 48(10): 1739-1745.
[8] 符成龙,麻红磊,池涌,严建华,倪明江. 热水解处理制革污泥过程中总Cr的转移与稳定性研究[J]. J4, 2013, 47(9): 1631-1636.
[9] 黄更,姜珺秋,赵庆良,于航,王琨. 生物产电加速厌氧堆肥污泥降解及产电性能[J]. J4, 2013, 47(5): 883-888.
[10] 马锦, 刘春, 张磊, 张静, 吴根, 杨景亮, 罗湘南. 微气泡曝气中活性污泥混合液性质变化[J]. J4, 2013, 47(10): 1877-1882.
[11] 谢浩辉,麻红磊,池涌,马增益. 污泥结合水测量方法和水分分布特性[J]. J4, 2012, 46(3): 503-508.
[12] 金余其, 褚晓亮, 郑晓园, 池涌, 严建华. 超声波辅助萃取油泥回收原油的试验研究[J]. J4, 2012, 46(12): 2178-2183.
[13] 胡凯, 赵庆良, 苗礼娟, 王琨, 邱微. 剩余污泥超声强化预处理及其厌氧消化效果[J]. J4, 2011, 45(8): 1463-1468.
[14] 马俊科, 刘春,吴根,杨景亮,郭建博,李再兴. 工业化UASB厌氧颗粒污泥产氢产乙酸菌群分析[J]. J4, 2011, 45(3): 576-581.
[15] 翁焕新, 章金骏, 曹彦圣, 马学文. 污泥陶粒的性能特征与烧制工艺[J]. J4, 2011, 45(10): 1877-1883.