Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1306-1314    DOI: 10.3785/j.issn.1008-973X.2019.07.009
化学工程     
Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能
朱清(),任王瑜,姜孝男,陈卫祥*()
浙江大学 化学系,浙江 杭州 310027
Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances
Qing ZHU(),Wang-yu REN,Xiao-nan JIANG,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1623 KB)   HTML
摘要:

为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.

关键词: 二硫化钼三硫化二铋石墨烯锂离子电池    
Abstract:

Bi2S3-MoS2/graphene hybrids was synthesized via a hydrothermal method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) in order to develop high-performance anode materials for lithium ion battery. The effects of microstructure of hybrids on their electrochemical lithium storage properties were analyzed. Especially, the Bi2S3-MoS2/graphene with Bi to Mo of 1∶4 in molar ratio deliver a reversible specific capacity as high as 1 140 mA·h/g with stable cyclic performance. At the current density of 1 000 mA/g, its high-rate capability is 886 mA·h/g. The excellent electrochemical performance can be contributed to that MoS2nanosheets exhibited few-layer structure with more edges and Bi2S3 nanoparticles displayed more uniform sizes. The nanostructured MoS2 and Bi2S3 were well dispersed on graphene surface. The lithium ion accommodation was enhanced, and the electrode kinetics of lithium storage was improved.

Key words: molybdenum disulfide    bismuthous sulfide    graphene    li-ion battery
收稿日期: 2019-01-08 出版日期: 2019-06-25
CLC:  TM 911  
通讯作者: 陈卫祥     E-mail: 2644017005@qq.com;weixiangchen@zju.edu.cn
作者简介: 朱清(1993—),男,硕士生,从事锂离子电池负极材料的研究. orcid.org/0000-0003-3898-2743. E-mail: 2644017005@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱清
任王瑜
姜孝男
陈卫祥

引用本文:

朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.

Qing ZHU,Wang-yu REN,Xiao-nan JIANG,Wei-xiang CHEN. Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1306-1314.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.009        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1306

图 1  不同样品的X-射线衍射图
图 2  不同样品的扫描电镜图
图 3  样品在不同放大倍率下的TEM图以及Bi2S3-MoS2/G-2的元素分布图
图 4  Bi2S3-MoS2/G-2复合材料的XPS图
图 5  不同样品的热重曲线
图 6  不同电极前3圈的循环伏安图(扫描速度为0.5 mV/s)
图 7  不同电极的前3圈充/放电曲线(电流密度为100 mA/g)
图 8  不同电极的循环和倍率性能图以及Bi2S3-MoS2/G-2电极在1 000 mA/g下的循环性能
图 9  不同电极的电化学阻抗谱和相应的等效电路,CPE为恒相位元
电极 Re Rf Rct
MoS2/G 9.57 16.66 28.26
Bi2S3-MoS2/G-1 8.35 16.54 24.21
Bi2S3-MoS2/G-2 8.21 11.87 12.73
Bi2S3-MoS2/G-3 8.55 13.78 27.57
Bi2S3/G 8.84 29.71 79.67
表 1  电化学阻抗拟合得到的动力学参数
1 TENG Y Q, ZHAO H L, ZHANG Z J, et al MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes [J]. ACS Nano, 2016, 10 (9): 8526- 8535
doi: 10.1021/acsnano.6b03683
2 SUN P L, ZHANG W X, HU X L, et al Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2 (10): 3498- 3504
doi: 10.1039/C3TA13994H
3 LIU S N, CAI Z Y, ZHOU J, et al Chrysanthemum-like Bi2S3 nanostructures: a promising anode material for lithium-ion batteries and sodium-ion batteries [J]. Journal of Alloys and Compounds, 2017, 715: 432- 437
doi: 10.1016/j.jallcom.2017.05.008
4 KIM T J, KIRN C, SON D, et al Novel SnS2-nanosheet anodes for lithium-ion batteries [J]. Journal of Power Sources, 2007, 167 (2): 529- 535
doi: 10.1016/j.jpowsour.2007.02.040
5 WANG Z, CHEN T, CHEN W X, et al CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1 (6): 2202- 2210
doi: 10.1039/C2TA00598K
6 ZHOU J W, QIN J, ZHANG X, et al 2D space-confined synthesis of few-Layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode [J]. ACS Nano, 2015, 9 (4): 3837- 3848
doi: 10.1021/nn506850e
7 DU G D, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
8 XIAO J, CHOI D W, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
9 CHEN B, MENG Y H, HE F, et al Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries [J]. Nano Energy, 2017, 41: 154- 163
doi: 10.1016/j.nanoen.2017.09.027
10 LIANG H C, NI J F, LI L Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage [J]. Nano Energy, 2017, 33: 213- 220
doi: 10.1016/j.nanoen.2017.01.033
11 CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
12 WANG Y, XING G Z, HAN Z J, et al Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable Lithium ion batteries [J]. Nanoscale, 2014, 6 (15): 8884- 8890
doi: 10.1039/C4NR01553C
13 肖丙刚, 谢治毅, 孙润亮 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报: 工学版, 2015, 49 (1): 42- 47
XIAO Bing-gang, XIE Zhi-yi, SUN Run-liang Theoretical design and analysis of isolator based on graphene[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (1): 42- 47
14 HUMMMERS W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
15 HUANG G C, CHEN T, CHEN W X, et al Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium [J]. Small, 2013, 9 (21): 3693- 3703
doi: 10.1002/smll.201300415
16 XU S R, ZHU Q, CHEN T, et al Hydrothermal synthesis of co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances [J]. Materials Chemistry and Physics, 2018, 219: 399- 410
doi: 10.1016/j.matchemphys.2018.08.048
17 WANG S G, LI X, CHEN Y, et al A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy [J]. Advanced Materials, 2015, 27 (17): 2775- 2782
doi: 10.1002/adma.v27.17
18 REN J, REN R P, LV Y K A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery [J]. Chemical Engineering Journal, 2018, 353: 419- 424
doi: 10.1016/j.cej.2018.07.139
19 SUN W P, RUI X H, ZHANG D, et al Bismuth sulfide: a high-capacity anode for sodium-ion batteries[J]. Journal of Power Sources, 2016, 309: 135- 140
doi: 10.1016/j.jpowsour.2016.01.092
20 ZUO X X, CHANG K, ZHAO J, et al Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material [J]. Journal of Materials Chemistry A, 2016, 4 (1): 51- 58
doi: 10.1039/C5TA06869J
21 YU Z T, YE J B, CHEN W X, et al Fabrication of few-layer molybdenum disulfide/reduced graphene oxide hybrids with enhanced lithium storage performance through a supramolecule-mediated hydrothermal route[J]. Carbon, 2017, 114: 125- 133
doi: 10.1016/j.carbon.2016.12.002
22 ZHAO Y, GAO D L, NI J F, et al One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability [J]. Nano Research, 2014, 7 (5): 765- 773
doi: 10.1007/s12274-014-0437-8
[1] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[2] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[3] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[4] 侯世成,任王瑜,朱清,陈卫祥. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报(工学版), 2019, 53(8): 1610-1617.
[5] 黄钰期,梅盼,陈晓济,邓长水. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213.
[6] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[7] 肖丙刚,谢治毅,孙润亮. 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 42-47.
[8] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.
[9] 郑卫东, 水淼, 任政娟, 舒杰, 徐丹, 张瑞丰. 高岭土掺杂NASICON固体电解质及全固态电池性能[J]. J4, 2012, 46(2): 237-242.
[10] 李辉,李赫,常焜,陈卫祥. Sn/C纳米复合材料的合成及其电化学嵌放锂性能[J]. J4, 2011, 45(5): 919-922.
[11] 马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.
[12] 马琳 陈卫祥 李翔 郑遗凡. 无机类富勒烯MoS2纳米粒子的合成和表征[J]. J4, 2007, 41(12): 2103-2106.
[13] 谢健 赵新兵 曹高劭 涂江平. 纳米CoSb作为锂离子电池新型负极材料的研究[J]. J4, 2006, 40(4): 638-641.