计算机与控制工程 |
|
|
|
|
基于梯度信息的实时优化与控制集成策略 |
李啸晨( ),苏宏业*( ),邵寒山,谢磊 |
浙江大学 智能系统与控制研究所,浙江 杭州 310027 |
|
Gradient information-based strategy for real time optimization and control integration |
Xiao-chen LI( ),Hong-ye SU*( ),Han-shan SHAO,Lei XIE |
Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China |
引用本文:
李啸晨,苏宏业,邵寒山,谢磊. 基于梯度信息的实时优化与控制集成策略[J]. 浙江大学学报(工学版), 2019, 53(5): 843-851.
Xiao-chen LI,Hong-ye SU,Han-shan SHAO,Lei XIE. Gradient information-based strategy for real time optimization and control integration. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 843-851.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.004
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I5/843
|
1 |
VARMA V A, REKLAITIS G V, BLAU G E, et al Enterprise-wide modeling and optimization: an overview of emerging research challenges and opportunities[J]. Computers and Chemical Engineering, 2007, 31 (5/6): 692- 711
|
2 |
SHOKRI S, HAYATI R, MARVAST M A, et al Real time optimization as a tool for increasing petroleum refineries profits[J]. Petroleum and Coal, 2009, 51 (2): 110- 114
|
3 |
ZHANG Y, MONDER D, FORBES J F Real-time optimization under parametric uncertainty: a probability constrained approach[J]. Journal of Process Control, 2017, 12 (3): 373- 389
|
4 |
BRDYS M A, TATJEWSKI P. Iterative algorithms for multilayer optimizing control [M]. London: Imperial College Press, 2005: 128–144.
|
5 |
ROBERTS P D An algorithm for steady-state system optimization and parameter estimation[J]. International Journal of Systems Science, 1979, 10 (7): 719- 734
doi: 10.1080/00207727908941614
|
6 |
TATJEWSKI P Iterative optimizing set-point control: the basic principle redesigned[J]. IFAC Proceedings Volumes, 2002, 35 (1): 49- 54
|
7 |
GAO W, ENGELL S Iterative set-point optimization of batch chromatography[J]. Computers and Chemical Engineering, 2005, 29 (6): 1401- 1409
doi: 10.1016/j.compchemeng.2005.02.035
|
8 |
YE L, CAO Y, YUAN X, et al. Retrofit self-optimizing control of Tennessee Eastman process [C] // IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2016: 866–871.
|
9 |
BINETTE J C, SRINIVASAN B, BONVIN D On the various local solutions to a two-input dynamic optimization problem[J]. Computers and Chemical Engineering, 2016, 95: 71- 74
doi: 10.1016/j.compchemeng.2016.09.003
|
10 |
SKOGESTAD S Plantwide control: the search for the self-optimizing control structure[J]. Journal of Process Control, 2000, 10 (5): 487- 507
doi: 10.1016/S0959-1524(00)00023-8
|
11 |
GE X, ZHU Y A necessary condition of optimality for uncertain optimal control problem[J]. Fuzzy Optimization and Decision Making, 2013, 12 (1): 41- 51
doi: 10.1007/s10700-012-9147-4
|
12 |
VERHEYLEWEGHEN A, J?SCHKE J Self-optimizing control of a two-stage refrigeration cycle[J]. IFAC PapersOnLine, 2016, 49 (7): 845- 850
doi: 10.1016/j.ifacol.2016.07.295
|
13 |
ARAúJO A C B D, GOVATSMARK M, SKOGESTAD S Application of plantwide control to the HDA process: I. steady-state optimization and self-optimizing control[J]. Control Engineering Practice, 2007, 15 (10): 1222- 1237
doi: 10.1016/j.conengprac.2006.10.014
|
14 |
SKOGESTAD S Selection of controlled variables and robust setpoints[J]. Industrial and Engineering Chemistry Research, 2002, 35 (1): 351- 356
|
15 |
HALVORSEN I J, SKOGESTAD S, MORUD J C, et al Optimal selection of controlled variables[J]. Industrial and Engineering Chemistry Research, 2003, 42 (14): 3273- 3284
doi: 10.1021/ie020833t
|
16 |
YE L, CAO Y, SKOGESTAD S Global self-optimizing control for uncertain constrained process systems[J]. IFAC PapersOnLine, 2017, 50 (1): 4672- 4677
doi: 10.1016/j.ifacol.2017.08.691
|
17 |
SRINIVASAN B, PRIMUS C J, BONVIN D, et al Run-to-run optimization via control of generalized constraints[J]. Control Engineering Practice, 2001, 9 (8): 911- 919
doi: 10.1016/S0967-0661(01)00051-X
|
18 |
SRINIVASAN B, BONVIN D, VISSER E, et al Dynamic optimization of batch processes: II. role of measurements in handling uncertainty[J]. Computers and Chemical Engineering, 2003, 27 (1): 27- 44
doi: 10.1016/S0098-1354(02)00117-5
|
19 |
ALSTAD V, SKOGESTAD S, HORIA E S Optimal measurement combinations as controlled variables[J]. Journal of Process Control, 2009, 19 (1): 138- 148
doi: 10.1016/j.jprocont.2008.01.002
|
20 |
XIN S, GUO Q, SUN H, et al Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems[J]. IEEE Transactions on Smart Grid, 2017, 6 (5): 2375- 2385
|
21 |
SKOGESTAD S Control structure design for complete chemical plants[J]. Computers and Chemical Engineering, 2004, 28 (1/2): 219- 234
|
22 |
KEADTIPOD P, BANJERDPONGCHAI D. Design of supervisory cascade model predictive control for industrial boilers [C]// Automatic Control Conference. Piscataway: IEEE, 2017: 122–125.
|
23 |
DARBY M L, NIKOLAOU M, JONES J, et al RTO: an overview and assessment of current practice[J]. Journal of Process Control, 2011, 21 (6): 874- 884
doi: 10.1016/j.jprocont.2011.03.009
|
24 |
KNAPP R, HU Y. Numerical optimization [M]// Berlin: Springer, 2018: 29–76.
|
25 |
BEBIANO N. Applied and computational matrix analysis [M]. Berlin: Springer, 2017: 58.
|
26 |
ALSTAD V, SKOGESTAD S Null space method for selecting optimal measurement combinations as controlled variables[J]. Industrial and Engineering Chemistry Research, 2007, 46 (3): 846- 853
doi: 10.1021/ie060285+
|
27 |
KARIWALA V, CAO Y, JANARDHANAN S Local self-optimizing control with average loss minimization[J]. Industrial and Engineering Chemistry Research, 2008, 47 (4): 1150- 1158
doi: 10.1021/ie070897+
|
28 |
FRAN?OIS G, SRINIVASAN B, BONVIN D Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty[J]. Journal of Process Control, 2005, 15 (6): 701- 712
doi: 10.1016/j.jprocont.2004.11.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|