Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 621-627    DOI: 10.3785/j.issn.1008-973X.2019.04.002
机械与能源工程     
航空发动机叶轮超高周疲劳寿命预测方法
王延忠1,2(),杨凯1,齐荣华1,陈燕燕1,李菲1,高浩2
1. 北京航空航天大学 机械工程及自动化学院,北京 100191
2. 三明学院 机电工程学院,福建 三明 365004
Ultra-high cycle fatigue life prediction method for aero engine impeller
Yan-zhong WANG1,2(),Kai YANG1,Rong-hua QI1,Yan-yan CHEN1,Fei LI1,Hao GAO2
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2. College of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, China
 全文: PDF(1023 KB)   HTML
摘要:

为了预测航空发动机叶轮的超高周疲劳寿命,以某型叶轮为研究对象,研究叶轮叶片在不同载荷状态下的应力和疲劳寿命. 建立叶轮的有限元模型,通过仿真分析叶轮叶片在离心、气动载荷作用下的应力变化情况;考虑叶轮叶片的表面状态,修正应力结果;基于位错偶极子模型及相关理论,建立TC4材料的超高周寿命预测模型;结合修正交变应力和寿命预测模型,实现了航空发动机叶轮的寿命预测. 对比分析现有模型和该模型下的寿命预测结果,结果表明:2种模型在低、高周范围内预测寿命的变化趋势一致;利用该模型有效解决了叶轮疲劳寿命的预测问题,预测值较贴近测试寿命;叶轮表面状态对疲劳寿命的预测结果影响较大,因为考虑了表面状态,寿命预测结果更贴近测试寿命值.

关键词: 航空发动机叶轮位错偶极子超高周疲劳寿命预测表面状态    
Abstract:

The stress and fatigue life of impeller of special equipment under different load conditions were analyzed in order to predict the ultra-high cycle fatigue life of aero-engine impellers. A finite element model of the impeller was established, and the stress changes of impeller blade which bears centrifugal and aerodynamic loads were simulated and analyzed. The results of further revise stress were achieved by considering surface state of impeller blade. An ultra-high cycle fatigue life prediction model for TC4 was established based on the dislocation dipole model and related theory. The service life for aero engine impeller was predicted by using the revised data and the prediction models. The service life predicted by existing model and the proposed model were compared. Results indicated that the changing of service life predicted by these two models showed the same trend in both low cycle and high cycle ranges. The problem of predicting the fatigue life of the impeller can be solved more effectively by the proposed model, and the predicted data was closer to the tested data. The surface state of the impeller had a greater impact on the prediction of fatigue life, because the predicted data was closer to the tested ones when considering the surface state.

Key words: aero-engine impeller    dislocation dipole    ultra-high cycle fatigue    life prediction    surface state
收稿日期: 2018-03-12 出版日期: 2019-03-28
CLC:  V 232  
作者简介: 王延忠(1963—),男,教授,博导,从事抗疲劳制造研究. E-mail: yzwang63@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王延忠
杨凯
齐荣华
陈燕燕
李菲
高浩

引用本文:

王延忠,杨凯,齐荣华,陈燕燕,李菲,高浩. 航空发动机叶轮超高周疲劳寿命预测方法[J]. 浙江大学学报(工学版), 2019, 53(4): 621-627.

Yan-zhong WANG,Kai YANG,Rong-hua QI,Yan-yan CHEN,Fei LI,Hao GAO. Ultra-high cycle fatigue life prediction method for aero engine impeller. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 621-627.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/621

图 1  某型号离心叶轮
图 2  叶轮疲劳寿命计算模型
图 3  叶轮有限元模型
图 4  总压比随网格数量变化图
图 5  应力集中系数模型
Rs δa/MPa Mk/MPa Nf
?1 750 553 35 700
?1 725 553 135 600
?1 700 553 127 300
?1 675 553 168 950
?1 650 553 739 300
?1 625 553 2 173 600
表 1  TC4疲劳寿命数据[24]
拟合参数 现有模型 本文模型
$\alpha $ 0.255 1 0.035 4
h 0.021 3
kh 0.003 7
表 2  疲劳寿命模型的参数拟合
图 6  2种模型的疲劳寿命预测结果对比图
图 7  叶片静态分析应力结果
图 8  叶片瞬态分析结果
图 9  粗糙度和应力集中系数的关系曲线
图 10  修正交变应力
寿命预测前提条件 原模型 本文模型
不考虑表面质量 1.38×108
考虑表面质量 3.59×108
表 3  寿命预测结果
1 毛鹏程. 离心压缩机叶轮断裂失效分析[D]. 大连: 大连理工大学, 2016: 2–8.
MAO Peng-cheng. Failure analysis of centrifugal compressor impeller [D]. Dalian: Dalian University of Technology, 2016: 2–8.
2 贺长波, 李宏坤, 张晓雯 流体激振下叶片疲劳失效机理与检测方法综述[J]. 风机技术, 2015, 57 (05): 69- 77
HE Chang-bo, LI Hong-kun, ZHANG Xiao-wen Review of blade fatigue failure mechanism and detection method based on flow induced vibration[J]. Compressor Blower and Fan Technology, 2015, 57 (05): 69- 77
3 何柏林, 魏康 高强度钢超高周疲劳的研究进展[J]. 材料导报, 2015, 29 (07): 134- 137
HE Bo-lin, WEI Kang Research progress of very high cycle fatigue for high strength steels[J]. Materials Review, 2015, 29 (07): 134- 137
4 胡燕慧, 张峥, 钟群鹏, 等 金属材料超高周疲劳研究进展[J]. 机械强度, 2009, 31 (6): 979- 985
HU Yan-hui, ZHNAG Zheng, ZHONG Qun-peng, et al Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31 (6): 979- 985
doi: 10.3321/j.issn:1001-9669.2009.06.021
5 NEPPIRAS E A. Techniques and equipment for fatigue testing at very high frequencies [C] // Proceeding of the 62nd Annual Meeting of ASTM. 1959, 59: 691–709.
6 ZHAO P C, LI S X, JIA Y F, et al Very high‐cycle fatigue behaviour of Ti‐6Al‐4V alloy under corrosive environment[J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41 (4): 881- 893
doi: 10.1111/ffe.v41.4
7 XU L, WANG Q, ZHOU M Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science and Engineering A, 2018, 715: 404- 413
doi: 10.1016/j.msea.2018.01.008
8 TANAKA K, AKINIWA Y Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25 (8/9): 775- 784
9 MUGHRABI H Specific features and mechanisms of fatigue in the ultrahigh-cycle regime[J]. International Journal of Fatigue, 2006, 28 (11): 1501- 1508
doi: 10.1016/j.ijfatigue.2005.05.018
10 CHAPETTI M D, TAGAWA T, MIYATA T Ultra-long cycle fatigue of high-strength carbon steels part I: review and analysis of the mechanism of failure[J]. Materials Science and Engineering A, 2003, 356 (1/2): 227- 235
11 PYTTEL B, SCHWERDT D, BERGER C Very high cycle fatigue: is there a fatigue limit?[J]. International Journal of Fatigue, 2011, 33 (1): 49- 58
doi: 10.1016/j.ijfatigue.2010.05.009
12 张志军, 何柏林, 李力 钢的超高周疲劳性能及其影响因素研究进展[J]. 钢铁, 2016, 51 (10): 62- 68
ZHANG Zhi-jun, HE Bo-lin, LI Li Research progress on ultra-long-life fatigue properties of steel and its influencing factors[J]. Iron and Steel, 2016, 51 (10): 62- 68
13 尹珩苏. 航空发动机低压涡轮叶片疲劳寿命预测[D]. 成都: 电子科技大学, 2016: 1–5.
YIN Heng-su. Fatigue life prediction of low pressure turbine blade of aero-engine [D]. Chengdu: School of Mechatronics Engineering, 2016: 1–5.
14 熊磊. 大型风力机叶片的疲劳寿命模糊预测方法研究[D]. 重庆: 重庆大学, 2016: 3–8.
XIONG Lei. Study on the fuzzy fatigue life prediction of large wind turbine blades [D]. Chongqing: Chongqing University, 2016: 3–8.
15 王小宏. 航空发动机涡轮叶片的强度分析和寿命预测[D]. 兰州: 兰州理工大学, 2016: 2–10.
WANG Xiao-hong. Strength analysis and life prediction of aero engine turbine blade [D]. Lanzhou: Lanzhou University of Technology, 2016: 2–10.
16 MURAKAMI Y, USUKI H Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. International Journal of Fatigue, 1989, 11 (5): 299- 307
doi: 10.1016/0142-1123(89)90055-8
17 PAOLINO D S, TRIDELLO A, CHIANDUSSI G, et al Estimation of P-S-N curves in very-high-cycle fatigue: statistical procedure based on a general crack growth rate model[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 41 (4): 718- 726
18 张定铨 残余应力对金属疲劳强度的影响[J]. 理化检验-物理分册, 2002, 38 (6): 231- 235
ZHANG Ding-quan The effects of the fatigue strength of metal[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2002, 38 (6): 231- 235
doi: 10.3969/j.issn.1001-4012.2002.06.001
19 李煜佳. 钛合金Ti-6A1-4V的疲劳行为及疲劳设计曲线研究[D]. 上海: 华东理工大学, 2014: 51–57.
LI Yu-jia. Investigation of fatigue properties and fatigue design diagram of titanium alloy Ti-6A1-4V [D]. Shanghai: East China University of Science and Technology, 2014: 51–57.
20 TANAKA K, MURA T A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48 (1): 97- 103
doi: 10.1115/1.3157599
21 VENKATARAMAN G, CHUNG Y W, MURA T Application of minimum energy formalism in a multiple slip band model for fatigue-Ⅱ. crack nucleation and derivation of a generalised Coffin-Manson law[J]. International Journal of Fatigue, 1991, 39 (11): 1631- 1638
22 MURA T, NAKASONE Y A theory of fatigue crack initiation in solids[J]. Journal of Applied Mechanics, 1990, 57 (1): 1- 6
doi: 10.1115/1.2888304
23 MURAKAMI Y, NOMOTO T, UEDA T Actors influencing the mechanism of super long fatigue failure in steels[J]. Fatigue and Fracture of Engineering and Materials and Structures, 1999, 22 (7): 581- 590
doi: 10.1046/j.1460-2695.1999.00187.x
24 张震宇. 压气机叶片TC4钛合金超高周疲劳失效机制及强度-寿命预测方法[D]. 北京: 北京理工大学, 2015: 47–53.
ZHANG Zhen-yu. Fatigue failure mechanism and strength-life prediction method of TC4 titanium alloy for compressor blade in very high cycle regime [D]. Beijing: Beijing Institute of Technology, 2015: 47–53.
[1] 胡天中,余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864.
[2] 廖燕华, 谢旭, 唐站站. Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报(工学版), 2018, 52(1): 73-81.
[3] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[4] 肖南,万洁. 考虑应力松弛的张力结构症状可靠度分析[J]. 浙江大学学报(工学版), 2014, 48(7): 1195-1201.
[5] 肖南, 王海, 陈华鹏, 张飞林. 大气腐蚀下网架结构症状可靠度及寿命预测[J]. J4, 2013, 47(8): 1373-1378.
[6] 武海荣, 金伟良, 延永东, 夏晋. 混凝土冻融环境区划与抗冻性寿命预测[J]. J4, 2012, 46(4): 650-657.
[7] 武海荣,金伟良,吕清芳,王海龙. 基于可靠度的混凝土结构耐久性环境区划[J]. J4, 2012, 46(3): 416-423.
[8] 金伟良,李志远,许晨. 基于相对信息熵的混凝土结构寿命预测方法[J]. J4, 2012, 46(11): 1991-1997.
[9] 薛鹏飞, 项贻强. 修正的氯离子在混凝土中的扩散模型及其工程应用[J]. J4, 2010, 44(4): 831-.