机械与能源工程 |
|
|
|
|
航空发动机叶轮超高周疲劳寿命预测方法 |
王延忠1,2( ),杨凯1,齐荣华1,陈燕燕1,李菲1,高浩2 |
1. 北京航空航天大学 机械工程及自动化学院,北京 100191 2. 三明学院 机电工程学院,福建 三明 365004 |
|
Ultra-high cycle fatigue life prediction method for aero engine impeller |
Yan-zhong WANG1,2( ),Kai YANG1,Rong-hua QI1,Yan-yan CHEN1,Fei LI1,Hao GAO2 |
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 2. College of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, China |
引用本文:
王延忠,杨凯,齐荣华,陈燕燕,李菲,高浩. 航空发动机叶轮超高周疲劳寿命预测方法[J]. 浙江大学学报(工学版), 2019, 53(4): 621-627.
Yan-zhong WANG,Kai YANG,Rong-hua QI,Yan-yan CHEN,Fei LI,Hao GAO. Ultra-high cycle fatigue life prediction method for aero engine impeller. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 621-627.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.002
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I4/621
|
1 |
毛鹏程. 离心压缩机叶轮断裂失效分析[D]. 大连: 大连理工大学, 2016: 2–8. MAO Peng-cheng. Failure analysis of centrifugal compressor impeller [D]. Dalian: Dalian University of Technology, 2016: 2–8.
|
2 |
贺长波, 李宏坤, 张晓雯 流体激振下叶片疲劳失效机理与检测方法综述[J]. 风机技术, 2015, 57 (05): 69- 77 HE Chang-bo, LI Hong-kun, ZHANG Xiao-wen Review of blade fatigue failure mechanism and detection method based on flow induced vibration[J]. Compressor Blower and Fan Technology, 2015, 57 (05): 69- 77
|
3 |
何柏林, 魏康 高强度钢超高周疲劳的研究进展[J]. 材料导报, 2015, 29 (07): 134- 137 HE Bo-lin, WEI Kang Research progress of very high cycle fatigue for high strength steels[J]. Materials Review, 2015, 29 (07): 134- 137
|
4 |
胡燕慧, 张峥, 钟群鹏, 等 金属材料超高周疲劳研究进展[J]. 机械强度, 2009, 31 (6): 979- 985 HU Yan-hui, ZHNAG Zheng, ZHONG Qun-peng, et al Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31 (6): 979- 985
doi: 10.3321/j.issn:1001-9669.2009.06.021
|
5 |
NEPPIRAS E A. Techniques and equipment for fatigue testing at very high frequencies [C] // Proceeding of the 62nd Annual Meeting of ASTM. 1959, 59: 691–709.
|
6 |
ZHAO P C, LI S X, JIA Y F, et al Very high‐cycle fatigue behaviour of Ti‐6Al‐4V alloy under corrosive environment[J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41 (4): 881- 893
doi: 10.1111/ffe.v41.4
|
7 |
XU L, WANG Q, ZHOU M Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science and Engineering A, 2018, 715: 404- 413
doi: 10.1016/j.msea.2018.01.008
|
8 |
TANAKA K, AKINIWA Y Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25 (8/9): 775- 784
|
9 |
MUGHRABI H Specific features and mechanisms of fatigue in the ultrahigh-cycle regime[J]. International Journal of Fatigue, 2006, 28 (11): 1501- 1508
doi: 10.1016/j.ijfatigue.2005.05.018
|
10 |
CHAPETTI M D, TAGAWA T, MIYATA T Ultra-long cycle fatigue of high-strength carbon steels part I: review and analysis of the mechanism of failure[J]. Materials Science and Engineering A, 2003, 356 (1/2): 227- 235
|
11 |
PYTTEL B, SCHWERDT D, BERGER C Very high cycle fatigue: is there a fatigue limit?[J]. International Journal of Fatigue, 2011, 33 (1): 49- 58
doi: 10.1016/j.ijfatigue.2010.05.009
|
12 |
张志军, 何柏林, 李力 钢的超高周疲劳性能及其影响因素研究进展[J]. 钢铁, 2016, 51 (10): 62- 68 ZHANG Zhi-jun, HE Bo-lin, LI Li Research progress on ultra-long-life fatigue properties of steel and its influencing factors[J]. Iron and Steel, 2016, 51 (10): 62- 68
|
13 |
尹珩苏. 航空发动机低压涡轮叶片疲劳寿命预测[D]. 成都: 电子科技大学, 2016: 1–5. YIN Heng-su. Fatigue life prediction of low pressure turbine blade of aero-engine [D]. Chengdu: School of Mechatronics Engineering, 2016: 1–5.
|
14 |
熊磊. 大型风力机叶片的疲劳寿命模糊预测方法研究[D]. 重庆: 重庆大学, 2016: 3–8. XIONG Lei. Study on the fuzzy fatigue life prediction of large wind turbine blades [D]. Chongqing: Chongqing University, 2016: 3–8.
|
15 |
王小宏. 航空发动机涡轮叶片的强度分析和寿命预测[D]. 兰州: 兰州理工大学, 2016: 2–10. WANG Xiao-hong. Strength analysis and life prediction of aero engine turbine blade [D]. Lanzhou: Lanzhou University of Technology, 2016: 2–10.
|
16 |
MURAKAMI Y, USUKI H Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. International Journal of Fatigue, 1989, 11 (5): 299- 307
doi: 10.1016/0142-1123(89)90055-8
|
17 |
PAOLINO D S, TRIDELLO A, CHIANDUSSI G, et al Estimation of P-S-N curves in very-high-cycle fatigue: statistical procedure based on a general crack growth rate model[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 41 (4): 718- 726
|
18 |
张定铨 残余应力对金属疲劳强度的影响[J]. 理化检验-物理分册, 2002, 38 (6): 231- 235 ZHANG Ding-quan The effects of the fatigue strength of metal[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2002, 38 (6): 231- 235
doi: 10.3969/j.issn.1001-4012.2002.06.001
|
19 |
李煜佳. 钛合金Ti-6A1-4V的疲劳行为及疲劳设计曲线研究[D]. 上海: 华东理工大学, 2014: 51–57. LI Yu-jia. Investigation of fatigue properties and fatigue design diagram of titanium alloy Ti-6A1-4V [D]. Shanghai: East China University of Science and Technology, 2014: 51–57.
|
20 |
TANAKA K, MURA T A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48 (1): 97- 103
doi: 10.1115/1.3157599
|
21 |
VENKATARAMAN G, CHUNG Y W, MURA T Application of minimum energy formalism in a multiple slip band model for fatigue-Ⅱ. crack nucleation and derivation of a generalised Coffin-Manson law[J]. International Journal of Fatigue, 1991, 39 (11): 1631- 1638
|
22 |
MURA T, NAKASONE Y A theory of fatigue crack initiation in solids[J]. Journal of Applied Mechanics, 1990, 57 (1): 1- 6
doi: 10.1115/1.2888304
|
23 |
MURAKAMI Y, NOMOTO T, UEDA T Actors influencing the mechanism of super long fatigue failure in steels[J]. Fatigue and Fracture of Engineering and Materials and Structures, 1999, 22 (7): 581- 590
doi: 10.1046/j.1460-2695.1999.00187.x
|
24 |
张震宇. 压气机叶片TC4钛合金超高周疲劳失效机制及强度-寿命预测方法[D]. 北京: 北京理工大学, 2015: 47–53. ZHANG Zhen-yu. Fatigue failure mechanism and strength-life prediction method of TC4 titanium alloy for compressor blade in very high cycle regime [D]. Beijing: Beijing Institute of Technology, 2015: 47–53.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|