Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (11): 2158-2164    DOI: 10.3785/j.issn.1008-973X.2017.11.009
土木与交通工程     
考虑剪缩性的城市固体废弃物非线性弹性模型
柯瀚1,2, 董鼎2, 陈云敏1,2, 郭城3, 冯世进4
1. 浙江大学 软弱土与环境土工教育部重点实验室 浙江 杭州 310058;
2. 浙江大学 岩土工程研究所, 浙江 杭州 310058;
3. 贵州省交通规划勘察设计研究院股份有限公司, 贵州 贵阳 550001;
4. 同济大学 地下建筑与工程系, 上海 200092
Nonlinear elastic model for municipal solid waste considering dilatancy effect
KE Han1,2, DONG Ding2, CHEN Yun-min1,2, GUO Cheng3, FENG Shi-jin4
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
3. Guizhou Transportation Planning Survey and Design Academe Limited Company, Guiyang 550001, China;
4. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1188 KB)   HTML
摘要:

针对城市固体废弃物(MSW)具有明显剪缩特性的特点,提出能够考虑剪缩性的非线性弹性模型.通过三轴固结不排水(CU)试验验证MSW的剪缩性,在传统非线性弹性模型框架中引入了剪缩模量与压硬模量,将固废的体积应变分解为由平均正应力与切应力产生的2个部分,基于三轴固结排水(CD)试验提出体积应变和广义切应变的全量表达式,通过微分手段获得剪缩模量和压硬模量的具体表达式.采用多学者的MSW试验结果对模型进行验证.结果表明,模型的拟合效果较好,各参数的离散型较小,能够较清楚地描述垃圾的力学特性.

Abstract:

A nonlinear elastic constitutive model considering the dilatancy behavior was proposed in order to describe the obvious dilatancy behavior of municipal solid waste (MSW). The dilatancy behavior of MSW was approved based on consolidated undrained triaxial compression tests. Dilatancy modulus and hardening modulus were introduced in traditional nonlinear elastic constitutive models. The volumetric strain of MSW was divided into two parts:generated by mean normal stress and by shear stress. Total expressions of normalized volumetric strain and generalized shear strain were established based on consolidated drained triaxial compression tests, and the dilatancy modulus and hardening modulus of the proposed model were obtained by differential. The proposed model was used to simulate test results obtained from published studies. The values of model parameters are different with different MSW samples or test conditions but fall within a relatively limited range. The simulation results accorded with the experimental values in general.

收稿日期: 2016-11-27 出版日期: 2017-11-13
CLC:  TU443  
基金资助:

国家“973”重点基础研究发展计划资助项目(2012CB719800);国家自然科学基金资助项目(51578503).

作者简介: 柯瀚(1975-),男,教授、博导,从事环境岩土工程等方面的教学和科研.ORCID:0000-0002-9809-3916.E-mail:boske@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.

KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2158-2164.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.11.009        http://www.zjujournals.com/eng/CN/Y2017/V51/I11/2158

[1] SINGH M K, FLEMING I R. Application of a hyperbolic model to municipal solid waste[J]. Geotechnique, 2011, 61(7):533-547.
[2] ZHANG Zhen-ying, WU Da-zhi, YAN Li-jun. Study on the non-linear shear strength properties of municipal solid waste[C]//Geo-Shanghai. Shanghai:2015:90-99.
[3] BRAY J D, ZEKKOS D, KAVAZANJIAN E, et al. Shear strength of municipal solid waste[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 135(6):709-722.
[4] MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(11):940-951.
[5] LI X, SHI J. Stress-strain responses and yielding characteristics of a municipal solid waste (MSW) considering the effect of the stress path[J]. Environmental Earth Sciences, 2015, 73(7):3901-3912.
[6] WALL D K, ZEISS C. Municipal Landfill Biodegradation and Settlement[J]. Journal of Environmental Engineering, 1995, 121(121):214-224.
[7] 陈云敏,高登,朱斌.城市固体废弃物的复合指数应力-应变模型及其应用[J].岩土工程学报,2009, 31(7):1020-1029. CHEN Yun-min, GAO Deng, ZHU Bin. Composite exponential stress-strain model of municipal solid waste and its application[J]. Yantu Gongcheng Xuebao/chinese Journal of Geotechnical Engineering, 2009, 31(7):1020-1029.
[8] SINGH M K, SHARMA J S, FLEMING I R. A design chart for estimation of horizontal displacement in municipal landfills[J]. Waste Management, 2009, 29(5):1577-87.
[9] SINGH M K, FLEMING I R. Application of a hyperbolic model to municipal solid waste[J]. Geotechnique, 2011, 61(7):533-547.
[10] REDDY K R, MOTAN E S, KOSGI S. Interface shear behavior of landfill composite liner systems:a finite element analysis[J]. Geosynthetics International, 2014, 3(2):247-275.
[11] FILZ G M, ESTERHUIZEN J J B, DDUNCAN J M. Progressive failure of lined waste impoundments[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 222(222):435-480.
[12] MCDOUGALL J. A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste[J]. Computers & Geotechnics, 2007, 34(4):229-246.
[13] BABU G L S, REDDY K R, CHOUKSEY S K. Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression[J]. Waste Management, 2010, 30(1):11-22.
[14] ZHANG B. Constitutive modelling of municipal solid waste[J]. Loughborough University, 2007:0-228.
[15] MACHADO S L, VILAR O M, CARVALHO M F. Constitutive model for long term municipal solid waste mechanical behavior[J]. Computers & Geotechnics, 2008, 35(5):775-790.
[16] MESCHYAN S R. Dilatancy and contraction of clayey soils under simple shear[J]. Soil Mechanics & Foundation Engineering, 1998, 35(1):13-16.
[17] BJERRUM L, SIMONS N, TORBLAA I. The Effect of Time on the shear strength of a Soft Marine Clay[C]//Proc. of Brussel Conf. on Earth Pressure Problems. Brussels:. 1958, 1:148-158.
[18] OWEIS I S, SMITH D A, ELLWOOD R B, et al. Hydraulic Characteristics of Municipal Refuse[J]. Journal of Geotechnical Engineering, 1990, 116(4):539-553.
[19] REDDY K R, HETTIARACHCHI H, PARAKALLA N S, et al. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA[J]. Waste Management, 2009, 29(2):952-9.
[20] BEAVEN R P, POWRIE W, ZARDAVA K. Hydraulic Properties of MSW[C]//International Symposium on Waste Mechanics. New orleans, Louisiana, United States:2010 American Society of Civil Engineers, 1994:103-104.
[21] WALL D K, ZEISS C. Municipal landfill biodegradation and settlement[J]. Journal of Environmental Engineering, 1995, 121(121):214-224.
[22] SKEMPTON A W. Mechanical Properties of Soils (ed. M. Reiner)[M].[S. l.]:Chapter X, Building Materials, 1954.
[23] EDITOR H S G. Finite element analysis of stresses and movements in excavations[J]. Journal of the Society for Information Display, 1978, 15(1):137.
[24] GRAHAM J, HOULSBY G T. Anisotropic elasticity of a natural clay[J]. Gilbert FlexiVan-Incorporated, 1983, 23(2):165-180.
[25] YIN J H, SAADAT F, GRAHAM J. Constitutive modelling of a compacted sand-bentonite mixture using three-modulus hypoelasticity[J]. Canadian Geotechnical Journal, 2011, 27(3):365-372.
[26] 沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运工程学报,1986,04:3-16. SHEN Zhu-jiang. A nonlinear dilatant stress-strain model for soils and rock materials[J]. Hydro-Science and Engineering, 1986(4).
[27] DOMASCHUK L, VALLIAPPAN P. Nonlinear settlement analysis by finite element[J]. Journal of the Geotechnical Engineering Division, 1975, 101:601-614.
[28] SHARIATMADARI N, MACHADO S L, NOORZAD A, et al. Municipal solid waste effective stress analysis[J]. Waste Management, 2009, 29(12):2918-2930.
[29] 施建勇,陆晓平.城市生活垃圾变形性质试验研究[J].河海大学学报:自然科学版,2001,B12:131-134. SHI Jian-yong, LU Xiao-pin. Experimental study on deformation behavior of solid waste from Xiaping Rubbish-Damping field[J]. Journal of Hohai University:Natural Sciences, 2001(B12):131-134.
[30] MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(11):940-951.
[31] LINK R E, VILAR O M, CARVALHO M. Mechanical properties of municipal solid waste[J]. Journal of Testing & Evaluation, 2004, 32(6):209-217.

[1] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[2] 张雪辉, 陈吉祥, 白云, 陈昂, 黄德中. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324.
[3] 郭康仕, 庄艳峰, 段伟. 蒙脱石电渗微观机理试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2373-2382.
[4] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.