Please wait a minute...
浙江大学学报(工学版)
土木工程     
停机状态叶片位置对风力机体系气动性能影响
柯世堂,余玮,王同光
1.南京航空航天大学 土木工程系,江苏 南京 210016;
2.南京航空航天大学 江苏省风力机设计高技术研究重点实验室,江苏 南京 210016
Impact for blade position on aerodynamic performance of  wind turbine system under stopped status
KE Shi tang, YU Wei, WANG Tong guang
1. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Jiangsu Key Laboratory of Hi Tech Research for Wind Turbine Design, Nanjing University of  Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(7018 KB)   HTML
摘要:

为了研究停机状态下叶片不同位置对风力机体系气动性能的影响程度,以南京航空航天大学自主研发的3 MW水平轴风力机为研究对象,采用大涡模拟(LES)方法对停机状态下叶片不同位置时的风力机体系气动性能进行数值模拟.基于8种计算工况(由叶片旋转全过程状态下和塔架的相对位置确定)下的三维非定常数值模拟结果,研究风力机体系表面空间风压分布特性及周围流场的作用机理,总结出不同停机状态下叶片位置对风力机气动性能和干扰效应的影响规律.结果表明,叶片停机位置对风力机体系表面风压分布和绕流特性的影响显著,上游叶片的遮挡效应对塔架迎风面和侧面产生显著影响,随着塔架与叶片相对位置的接近,塔架背风面尾涡区域变得细长且不规则.

Abstract:

The 3 MW wind turbine developed by Nanjing University of Aeronautics and Astronautics was studied in order to analyze the impact for blade position on aerodynamic performance of wind turbine system under stopped status. Different blades positions on aerodynamic performance of wind turbine under stopped status were simulated by large eddy simulation. The space of wind pressure distribution characteristics and mechanism of flow field were analyzed based on threedimensional unsteady numerical simulation results of eight calculation conditions which are determined by relative position between blades and tower in the whole process of blade rotation. The regularity of blade position effects on aerodynamic performance and interference effect under stopped status was summarized. Results showed that wind pressure distribution on the surface of wind turbine system and flow characteristics were significantly affected by the blade stopped position, and shade effect of blade significantly impacted tower leeward and sides. Trailing vortex area of tower leeward became thin and irregular with the approaching of relative position between tower and blade.

出版日期: 2016-07-23
:  TK 83  
基金资助:

国家“973”重点基础研究发展规划资助项目(2014CB046200);中央高校基本科研业务费资助项目(56XAA16018);中国博士后特别资助项目(2015T80551).

作者简介: 柯世堂(1982-),男,副教授,从事结构抗风与抗震研究.ORCID:0000000302403578.E-mail: keshitang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

柯世堂,余玮,王同光. 停机状态叶片位置对风力机体系气动性能影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.002.

KE Shi tang, YU Wei, WANG Tong guang. Impact for blade position on aerodynamic performance of  wind turbine system under stopped status. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.002        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1230

[1] KE S T, WANG T G, GE Y J. Windinduced responses and equivalent static wind loads of towerblade coupled large wind turbine system [J]. Structural Engineering and Mechanics, 2014, 52(3): 485-505.
[2] KARIMIRAD M, MOAN T. Waveand windinduced dynamic response of a spartype offshore wind turbine [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 138(1): 920.
[3] 田仁斌, 李学敏, 何成明. 上风型水平轴风力机塔架干涉的数值模拟[J]. 工程热物理学报, 2014, 35(12): 2417-2420.
TIAN Renbin, LI Xuemin, HE Chengming, et al. Numerical simulation of upwindtype horizontal axis wind turbine bladetower interaction [J]. Journal of Engineering Thermophysics, 2014, 35(12): 2417-2420.
[4] 张立茹, 汪建文, 于海鹏. S型叶尖小翼对风力机流场特性影响的研究[J]. 工程热物理学报, 2012, 33(05): 788-791.
ZHANG Liru, WANG Jianwen, YU Haipeng. Research on characteristics of the flow field of wind turbine with the Stype tip vane [J]. Journal of Engineering Thermophysics, 2012, 33(05): 788-791.
[5] 邹琳, 张亚飞, 郭丛波, 等. 基于波浪翼型叶片轴流风力机的数值研究[J]. 太阳能学报, 2013, 34(09): 1594-1598.
ZOU Lin, ZHANG Yafei, GUO Congbo, et al. Numerical research of the axial fanbased on wavy airdoil blade [J]. Acta Energiae Solaris Sinica, 2013, 34(09): 1594-1598.
[6] 关鹏, 丁珏, 翁培奋. 不同湍流模型对水平轴风力机三维粘性气流特性的影响[J]. 太阳能学报, 2010, 31(01): 86-90.
GUAN Peng, DING Jue, WENG Peifen. Separated flows around hawt blades with different turbulent models [J]. Acta Energiae Solaris Sinica, 2010, 31(01): 86-90.
[7] 柯世堂, 王同光, 曹九发. 考虑土结相互作用大型风力发电结构风致响应分析[J]. 土木工程学报, 2015,48(02): 18-25.
KE Shitang, WANG Tongguang, CAO Jiufa. Analysis on windinduced responses of large wind power structures considering soilstructure interaction [J]. China Civil Engineering Journal, 2015, 48(02): 18-25.
[8] 田琳琳, 赵宁, 钟伟. 风力机尾流相互干扰的数值模拟[J]. 太阳能学报, 2012, 33(08): 1315-1320.
TIAN Linlin, ZHAO Ning, ZHONG Wei. Numerical simulation of wake interactions of wind turbines [J]. Acta Energiae Solaris Sinica, 2012, 33(08): 1315-1320.
[9] 李少华, 岳巍澎, 匡青峰. 双机组风力机尾流互扰及阵列的数值模拟[J]. 中国电机工程学报, 2011, 31(05): 101-107.
LI Shaohua, YUE Weipeng, KUANG Qingfeng. Numerical simulation of wake interaction and array of double wind turbine [J]. Proceedings of the CSEE, 2011, 31(05): 101-107.
[10] 李少华, 匡青峰, 吴殿文, 等. 12MW风力机整机流场的数值模拟[J]. 动力工程学报, 2011, 31(07): 551-556.
LI Shaohua, KUANG Qingfeng, WU Dianwen, et al. Numerical simulation on flow field of a 12MW wind turbine [J]. Journal of Chinese Society of Power Engineering, 2011, 31(07): 551-556.
[11] 袁行飞, 余俊伟. 屋顶安装型风力机塔架风振反应分析[J]. 浙江大学学报:工学版, 2013, 47 (11): 1911-1916.
YUAN Xingfei, YU Junwei. Windincluded respose analysis of wind turbine tower installed on building roof e [J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (11): 1911-1916.
[12] JEONG M S, KIM S W, LEE I, et al., The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade [J]. Renewable Energy, 2013, 60: 256-268.
[13] 柯世堂, 王同光, 陈少林, 等. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报:工学版, 2014, 48(4): 686-692.
KE Shitang, WANG Tongguang, CHEN Shaolin, et al. Windinduced responses and equivalent static wind load of large wind turbine system [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(4): 686-692.

[1] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[2] 倪益华, 宋芳芳, 过海. 风机叶片设计二次开发与气动性能仿真[J]. J4, 2012, 46(2): 315-320.