Please wait a minute...
浙江大学学报(工学版)
土木工程     
超高层建筑横风向风振局部气动外形优化
王磊, 梁枢果,王泽康,张正维
1. 河南理工大学 土木工程学院,河南 焦作 454000;
2. 武汉大学 土木建筑工程学院,湖北 武汉 430072;
3. 奥雅纳工程咨询(上海)有限公司,上海 200031
Effect of aerodynamic optimization to across-wind response of  super tall buildings
WANG Lei,LIANG Shu guo,WANG Ze kang,ZHANG Zheng wei
1. School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454000,China;
2. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072,China;
3. Arup International Consultants (Shanghai) Limited Company,Shanghai 200031,China
 全文: PDF(1639 KB)   HTML
摘要:

为了研究局部气动措施对方截面超高层建筑横风向风振的控制效果,开展大量的多自由度气弹模型风洞实验,测量模型在多种切角率、圆角率、粗糙条及开洞方式下的横风向风致位移响应,对横风向位移进行对比分析.结果表明:当切角率大于5%或圆角率大于15%时,横风向风致位移响应显著降低,位移均方根随折算风速的变化曲线接近直线而不再呈倒“V”字形,说明涡激共振发生的可能性得到了有效抑制|切角率或圆角率越大,横风向位移响应的减小幅度越显著;特定粗糙条的设置可以使涡振响应幅值降低20%以上;通风洞不论是垂直于来流还是平行来流,都会使涡振响应幅值减小,且洞口在中上部时的效果最佳.整体来看,局部气动外形控制措施具有显著的抗风优化效果.

Abstract:

Wind tunnel tests of multi degree of freedom (MDOF) aero elastic model were conducted in order to analyze the influence of aerodynamic modifications on across wind response of super highrise buildings with square section. The across wind displacements of the models with various chamfering ratio, rounding ratio, openings and roughness were measured. Results showed that the vortex induced vibration (VIV) displacements were significantly decreased when the chamfering ratio was larger than 5% or the rounding ratio was larger than 15%. Under these conditions, the VIV RMS displacements were almost linear with reduced wind speed. The response level decreased with increasing chamfering ratio or rounding ratio, which means the possibility of vortex induced resonance phenomena was decreased. The setting of the specific rough can reduce the amplitude of the vibration response of the vortex by more than 20%.The openings can make the vortex vibration response amplitude decrease, especially when the opening is located at the middle of the model. In summary,aerodynamic optimization is an efficient way to control the vortex induced vibration of super tall buildings.

出版日期: 2016-07-23
:  TU 312  
基金资助:

国家自然科学基金资助项目(51178359).

通讯作者: 梁枢果,男,教授.ORCID:0000000335816440.     E-mail: liangsgwhu@sohu.com
作者简介: 王磊(1987-),男,讲师,从事结构抗风研究. ORCID:0000000280589665.E-mail:tumuwanglei@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.003.

WANG Lei,LIANG Shu guo,WANG Ze kang,ZHANG Zheng wei. Effect of aerodynamic optimization to across-wind response of  super tall buildings. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.003.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.003        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1239

[1] XIE Jiming. Aerodynamic optimization in supertall building designs [C]∥7th International Colloquium on Bluff Body Aerodynamics and its Applications. Shanghai: [s.n.], 2012: 104-111.
[2]王磊,梁枢果,邹良浩, 等.超高层建筑抗风体型选取研究[J].湖南大学学报:自然科学版, 2013, 40(11): 34-39.
WANG Lei, LIANG Shuguo, ZOU Lianghao. et al. Study on body shape selection of highrise building from the point of wind resistance [J]. Journal of Hunan University: Natural Sciences, 2013, 40(11): 34-39.
[3] IRWIN P A. Bluff body aerodynamics in wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 701-712.
[4] KWOK K C S, BAILEY P A. Aerodynamic devices for tall buildings and structures [J]. Journal of Engineering Mechanics, 1987, 113(3): 349-365.
[5] KWOK K C S. Effect of building shape on windinduced response of tall building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/3): 381-390.
[6] KAWAI H. Effect of corner modifications on aeroelastic instabilities of tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 7476(98): 719-729.
[7] HAYASHIDA H, MATAKI Y, IWASA Y. Aerodynamic damping effects of tall building for a vortex induced vibration [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(s13):1973-1983.
[8] HAYASHIDA H, IWASA Y. Aerodynamic shape effects of tall building for vortex induced vibration [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1/2):237-242.
[9] HAYASHIDA K, KATAGIRI J, NAKAMURA O, et al. Windinduced response of highrise buildings Effects of corner cuts or openings in square buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50(93): 319-328.
[10]谢壮宁, 李佳. 强风作用下楔形外形超高层建筑横风效应试验研究[J]. 建筑结构学报, 2011, 32(12):118-126.
XIE Zhuangning,LI Jia. Experimental research on cross wind effect on tapered supertall buildings under action of strong wind [J]. Journal of Building Structures,2011, 32 (12):118-126.
[11]顾明,王凤元, 张锋. 用测力天平技术研究超高层建筑的动态风载[J]. 同济大学学报, 1999, 27(3): 259-263.
GU Ming, WANG Fengyuan, ZHANG Feng. Study on aerodynamic loads of super highrise buildings by high frequency force balance technique [J]. Journal of Tongji University, 1999, 27(3): 259-263.
[12]顾明, 叶丰. 典型超高层建筑风荷载频域特性研究[J].建筑结构学报, 2006, 27(1): 30-36.
GU Ming,YE Feng.Frequence domain characteristics of wind loads on typical supertall buildings [J]. Journal of Building Structures, 2006, 27(1) : 30-36.
[13] 曹会兰, 全涌, 顾明. 一类准方形截面超高层建筑的顺风向气动阻尼[J]. 振动与冲击, 2012, 31(22): 84-89.
CAO Huilan, QUAN Yong, GU Ming. Alongwind aerodynamic damping of highrise buildings with aerodynamically modified square crosssections [J]. Journal of Vibration and Shock, 2012, 31(22): 84-89.
[14] 张正维, 全涌, 顾明, 等.斜切角与圆角对方形截面高层建筑气动力系数的影响研究[J].土木工程学报,2013, 49(6):12-20.
ZHANG Zhengwei, QUAN Yong, GU Ming, et al. Effects of corner chamfering and rounding modification on aerodynamic coefficients of square tall buildings [J]. China Civil Engineering Journal, 2013, 49(6): 12-20.
[15]王磊, 王海澎, 王述良, 等. 开洞高层建筑风压特性数值模拟研究[J]. 武汉理工大学学报, 2012, 34(5): 122-126.
WANG Lei, WANG Haipeng, WANG Shuliang, et al. Numerical study on wind pressure of highrise building with opening [J]. Journal of Wuhan University of Technology,2012, 34(5): 122-126.
[16]张耀春, 秦云, 王春刚.洞口设置对高层建筑静力风荷载的影响研究[J].建筑结构学报, 2004, 25(4): 112-117.
ZHANG Yaochun, QIN Yun, WANG Chungang. Research on the influence of openings to static wind load of high rise buildings [J]. Journal of Building Structures, 2004, 25(4): 112-117.
[17]全涌, 严志威, 温川阳, 等.开洞矩形截面超高层建筑局部风压风洞试验研究[J].建筑结构, 2011, 41(4): 113-116.
QUAN Yong, YAN Zhiwei,WEN Chuanyang,et al. Wind tunnel test study on local wind pressure of rectangular super high rise building with openings [J]. Building Structure, 2011, 41( 4) : 113-116.
[18]王磊, 梁枢果, 邹良浩, 等. 超高层建筑多自由度气弹模型的优势及制作方法[J]. 振动与冲击, 2014, 33(17): 24-30.
WANG Lei,LIANG Shuguo,ZOU Lianghao,et al. The advantages and making method of super highrise buildings multiDOF aeroelastic model [J]. Journal of Vibration and Shock, 2014, 33(17): 24-30.
[19]王磊, 梁枢果, 邹良浩, 等. 超高层建筑涡振过程中体系振动频率[J].浙江大学学报:工学版,2014, 48(5): 805-812.
WANG Lei,LIANG Shuguo,ZOU Lianghao,et al. Investigation on VIV system vibration frequency of super highrise building [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(5): 805-812.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[3] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[4] 梁笑天,袁行飞. 索支撑压杆屈曲性能分析[J]. 浙江大学学报(工学版), 2015, 49(3): 505-510.
[5] 肖南,杨逢春. 不同温度和位移边界下混凝土楼板配筋建议[J]. 浙江大学学报(工学版), 2014, 48(11): 1925-1932.
[6] 楼文娟,王嘉伟,杨伦,陈勇. 雷暴风三维脉动风速场数值模拟[J]. 浙江大学学报(工学版), 2014, 48(7): 1162-1169.
[7] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[8] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[9] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[10] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[11] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[12] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[13] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[14] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[15] 宁鹏飞,唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析[J]. J4, 2012, 46(12): 2252-2258.