Please wait a minute...
浙江大学学报(工学版)
土木工程     
竖向荷载对黏土地基中单桩水平受荷性能的影响
何奔,王欢,洪义,王立忠,赵长军,秦肖
1.浙江大学 土木工程学系,浙江 杭州 310027;
2.浙江省交通规划设计研究院, 浙江 杭州 310002;
3.温州市交通投资集团有限公司,浙江 温州 325000;
4.中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122
Effect of vertical load on lateral behavior of single pile in clay
HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao
1.Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China;
2.Zhejiang Provincial Institute of Communications Planning, Design and Research, Hangzhou 310002, China;
3.Wenzhou Communication Investment Group Limited Company, Wenzhou 325000, China;
4.Power China Huadong Engineering Corporation, Hangzhou 311122, China
 全文: PDF(2301 KB)   HTML
摘要:

为了研究正常固结土(NC)和超固结土(OC)中,竖向荷载作用后,允许土体固结和超静孔压消散的条件下,桩体的水平静、循环受荷性能,开展8组离心模型试验.基于试验结果,开展三维有限元模拟(FEA),揭示竖向荷载对桩体水平受荷性能的影响机理,分析不同竖向荷载作用下,桩体水平初始刚度和极限承载力的变化规律.结果表明,在正常固结土中,施加竖向工作荷载,并允许土体孔压消散,减少了土体的初始应力比,增加了可发挥的土体不排水抗剪强度,提高10%的桩基水平极限承载力和50%的初始桩头刚度;在超固结土中,施加竖向荷载,增加了土体的初始应力比,减少了可发挥的土体不排水抗剪强度,降低了13%桩基的水平静极限承载力和33%的初始桩头刚度.

Abstract:

 A series of detailed centrifuge test were performed in order to investigate the lateral monotonic and cyclic behavior of a single pile in normal (NC) and over consolidated clay (OC) with and without application of vertical loading at the pile head. Three dimensional finite element analyses (FEA) were conducted to offer further insights into the effects of vertical loading on the lateral initial stiffness and bearing capacity of the pile. Both physical and numerical investigation reveal that after applying the vertical load and allowing the dissipation of excess pore pressure in NC, the stress ratio of the soil around the pile decreases while the mobilisable undrained shear stength increases, resulting in 10% and 50% increase of the lateral initial stiffness and bearing capacity of the pile, respectively. Due to application of vertical load to a single pile in the over consolidated clay, the soil stress ratio prior to lateral loading increases while the mobilisable undrained shear stength decreases, consequently leading to 13% and 33% reduction of the lateral initial stiffness and bearing capacity of the pile, respectively.

出版日期: 2016-07-23
:  TU 473  
基金资助:

 国家杰出青年科学基金资助项目(51325901);国际科技合作计划资助项目(2015DFE72830);国家自然科学基金资助项目(51338009);中央高校基本科研业务费专项资金资助项目(2016QN4022).

通讯作者: 洪义,男,讲师. ORCID: 0000000259848204.     E-mail: yi_hong@zju.edu.cn
作者简介: 作者简介: 何奔(1988-),男,博士生,从事桩基工程和海上风电基础的研究. ORCID: 0000000217981461.E-mail: hebenzheda@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.001.

HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.001        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1221

[1] POLOUS H G, DAVIS E H. Pile foundation analysis and design [M]. New York: Willey, 1980.
[2] KARTHIGEYAN S, RAMAKRISHNA V, RAJAGOPAL K. Numerical investigation of the effect of vertical load on the lateral response of piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 512-521.
[3] 郑刚, 王丽. 竖向及水平荷载加载水平, 顺序对单桩承载力的影响[J]. 岩土工程学报, 2008, 30(12): 1796-1804.
ZHENG Gang, WANG Li. Effect of loading level and sequence of vertical and lateral load on bearing capacity of single pile [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1796-1804.
[4] HUSSIEN M N, TOBITA T, IAI S, et al. On the influence of vertical loads on the lateral response of pile foundation [J]. Computers and Geotechnics, 2014, 55(1): 392-403.
[5] MATLOCK H. Correlations for design of laterally loaded piles in soft clay [C]∥ Proceedings of the II Annual Offshore Technology Conference. Houston: [s. n.], 1970: 577-594.
[6] JEANJEAN P.Reassessment of py curves for soft clays from centrifuge testing and finite element modeling [C]∥Proceeding of Offshore Technology Conference. Houston: [s. n.], 2009: 123.
[7] WANG L, HE B, HONG Y, et al. Field tests of the lateral monotonic and cyclic performance of jetgroutingreinforced castinplace piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(5): 06015001.
[8] MEYERHOF G G, YALCIN A S, MATHUR S K. Ultimate pile capacity for eccentric inclined load [J]. Journal of Geotechnical Engineering, 1983, 109(3): 408-423.
[9] MEYERHOF G G, SASTRY V. Bearing capacity of rigid piles under eccentric and inclined loads [J]. Canadian Geotechnical Journal, 1985, 22(3): 267-276.
[10] ANAGNOSTOPOULOS C, GEORGIADIS M. Interaction of axial and lateral pile responses [J]. Journal of Geotechnical Engineering, 1993, 119(4): 793-798.
[11] MCAULTY J F. Thrust loading on piles [J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(2): 125.
[12] ZHUKOV N V, BALOV I L. Investigation of the effect of a vertical surcharge on horizontal displacements and resistance of pile columns to horizontal loads [J]. Soil Mechanics and Foundation Engineering, 1978, 15(1): 16-22.
[13] ZHANG L, GONG X, YANG Z, et al. Elastoplastic solutions for single piles under combined vertical and lateral loads [J]. Journal of Central South University of Technology, 2011, 18(1): 216-222.
[14] LIANG F, CHEN H, CHEN S. Influences of axial load on the lateral response of single pile with integral equation method [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(16): 1831-1845.
[15] POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering [C]∥Foundation Engineering: Current Principles and Practices. Chicago: ASCE, 1989: 1578-1606.
[16] TAN T S, INOUE T, LEE S L. Hyperbolic method for consolidation analysis [J]. Journal of Geotechnical Engineering, 1991, 117(11): 1723-1737.
[17] STEWART D P, RANDOLPH M F. A new site investigation tool for the centrifuge [C]∥Proceedings of the International Conference Centrifuge. Boulder: [s. n.], 1991: 531-538.
[18] RANDOLPH M F, HOPE S. Effect of cone velocity on cone resistance and excess pore pressures [C]∥Proceedings of International Symposium on Engineering Practice and Performance of Soft Deposits. Tokyo: Japanese Geotechnical Society, 2004: 147-152.
[19] GOURVENEC S, ACOSTAMARTINEZ H E, RANDOLPH M F. Experimental study of uplift resistance of shallow skirted foundations in clay under transient and sustained concentric loading [J]. Géotechnique, 2009, 59(6): 525-537.
[20] BOLTTON M D, STEWART D I. The effect on propped diaphragm walls of rising groundwater in stiff clay [J]. Géotechnique, 1994, 44(1): 111-127.
[21] KULHAWY F H, CHEN Y J. A thirty year perspective of Broms lateral loading models, as applied to drilled shafts [C]∥Proceedings of Bengt Broms symposium in geotechnical engineering. Singapore: [s.n.], 1995: 225-240.
[22] LEBLANC C, BYRNE B W, HOULSBY G T. Response of stiff piles to random twoway lateral loading [J]. Geotechnique, 2010, 60(9): 715-721.
[23] Systèmes D. Abaqus analysis users manual. Simulia Corp. Providence, RI, USA, 2007.
[24] 王金昌, 陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
[25] RANDOLPH M F, WROTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles [J]. Geotechnique, 1981, 31(1): 143-157.
[26] Maín D. A hypoplastic constitutive model for clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 311-336.
[27] Maín D, HERLE I. State boundary surface of a hypoplastic model for clays [J]. Computers and Geotechnics, 2005, 32(6): 400-410.
[28] BUTTERFIELD R. A natural compression law for soils [J]. Géotechnique, 1979, 29(4): 469-480.
[29] POWRIE W. The behaviour of diaphragm walls in clay [D]. Cambridge: University of Cambridge, 1986.
[30] ALTABBAA A. Permeability and stressstrain response of speswhite kaolin [D]. Cambridge: University of Cambridge, 1987.
[31] PARRY R H G, NADARAJAH V. Observations on laboratory prepared, lightly overconsolidated specimens of kaolin [J]. Geotechnique, 1974, 24(3): 345-357.
[32]BENZ T. Smallstrain stiffness of soils and its numerical consequences [D]. Stuttgart: Universitat Stuttgart, 2007.

[1] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[2] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[3] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[4] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[5] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[6] 庾焱秋,王奎华,吕述晖,徐礼阁. 传感器黏结剂对低应变测试曲线的影响[J]. 浙江大学学报(工学版), 2015, 49(9): 1725-1730.
[7] 苟尧泊,俞峰,夏唐代. 增层开挖引起既有预制桩残余应力释放分析[J]. 浙江大学学报(工学版), 2015, 49(5): 969-974.
[8] 刘念武, 龚晓南, 俞峰. 大直径钻孔灌注桩的竖向承载性能[J]. 浙江大学学报(工学版), 2015, 49(4): 763-768.
[9] 王奎华,李振亚,吕述晖,张鹏,庾焱秋. 静钻根植竹节桩纵向振动特性及应用研究[J]. 浙江大学学报(工学版), 2015, 49(3): 522-530.
[10] 龙凡, 王立忠, 李凯, 李玲玲. 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报(工学版), 2015, 49(2): 218-224.
[11] 王奎华,陈鑫,吕述晖,吴文兵,李振亚. 自由振动时带承台单桩的纵向动力特性[J]. 浙江大学学报(工学版), 2014, 48(9): 1595-1602.
[12] 刘念武,龚晓南,楼春晖. 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1141-1147.
[13] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[14] 胡安峰, 张光建, 贾玉帅, 张晓冬. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. J4, 2014, 48(4): 721-726.
[15] 王忠瑾,谢新宇,方鹏飞,李金柱,金伟良. 刚性长短组合桩的非线性沉降计算分析[J]. J4, 2014, 48(3): 463-470.