Please wait a minute...
浙江大学学报(工学版)
机械工程     
气动肌肉-气缸并联平台结构设计及位姿控制
陶国良,左赫,刘昊
1.浙江大学 机械工程学系,浙江 杭州 310027
Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder
TAO Guo-liang, ZUO He, LIU Hao
1.Department of Zhejiang University, Hangzhou 310027, China
 全文: PDF(889 KB)   HTML
摘要:

为改进传统气缸驱动并联平台刚度低、难以控制的缺点,提出一种由3根气动肌肉和一个气缸混合驱动的并联平台.该平台具有横摇、纵摇、升沉3个方向上的自由度,其中由气缸控制的平台等效刚度控制系统和由3根气动肌肉控制的平台位姿控制系统自然分离,降低了控制器的设计难度.在对并联平台系统进行建模分析的基础上,采用气缸与气动肌肉控制相对独立的控制策略,针对气动肌肉强耦合、高度非线性的力学特性,设计一种自适应鲁棒控制器对并联平台的运动进行位姿控制.仿真结果表明,该控制器能够获得高精度的平台位姿轨迹跟踪控制效果,其中在线参数辨识部分能够对非线性模型补偿算法进行实时修正,同时控制器具有良好的鲁棒性.

Abstract:

In order to overcome the shortcomings of platforms driven by air cylinders such as low stiffness and controlling complexity, a parallel platform driven by three pneumatic muscles and one air cylinder was designed. The platform had three degrees of freedom, namely roll, pitch and heave. The stiffness of the parallel platform was controlled only by the air cylinder, while the posture was controlled by three pneumatic muscles, so the controller could be easily designed separately. Based on the modeling analysis of the parallel platform, a control strategy which separately controlled the air cylinder and pneumatic muscles was employed. To overcome the limitation caused by the coupling and nonlinear characteristics of pneumatic muscles, an adaptive robust controller (ARC) was designed for posture controlling of the parallel pneumatic platform. Simulation results show that the proposed ARC controller can achieve a high level of precision of trajectory tracking motion control. With the ability of online parameter identification, the ARC controller is able to modify the nonlinear compensation part based on the identification results. The robustness of the ARC controller is also verified in simulation experiments.

出版日期: 2015-12-26
:  TP 273  
基金资助:

国家自然科学基金资助项目(51375430)

作者简介: 陶国良(1964-),男,教授,博导,主要从事气动电子技术、气动伺服控制、工业自动化控制和测试、燃料电池、空气压缩机及压缩空气气动发动机等领域的研究.E-mail:gltao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.002.

TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.002        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/821

[1] MENG Wei, ZHOU Zu-de, LIU Quan, et al. A practical fuzzy adaptive control strategy for multi-DOF parallel robot [C]∥Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13). Paris: Atlantis Press, 2013: 620-623.
[2] DASGUPTA B, MRUTHYUNJAYA T S. The Stewart platform manipulator: A review [J]. Mechanism and Machine Theory, 2000, 35: 1540.
[3] 武卫, 王占林. 基于小脑模型神经网络的气动六自由度并联平台的复合控制方法研究[J]. 机械科学与技术. 2008, 27(6): 748-751.
WU Wei, WANG Zhan-lin. A compound control method for a six-DOF parallel pneumatic manipulator based on CMAC networks [J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 748-751.
[4] 傅晓云, 方敏, 李宝仁. 气动人工肌肉刚度特性的分析[J]. 机床与液压, 2007, 35(2): 109-111.
FU Xiao-yun, FANG Min, LI Bao-ren. Theoretic analysis of stiffness characteristics of the pneumatic muscle actuator [J]. Machine Tool & Hydraulics, 2007, 35(2): 109-111.
[5] 施光林, 沈伟. 气动人工肌肉并联平台自适应模糊CMAC姿态跟踪控制[J]. 中国机械工程, 2012, 23(2): 171-176.
SHI Guang-lin, SHEN Wei. Adaptive fuzzy CMAC position tracking control of parallel platform based on pneumatic artificial muscles [J]. China Mechanical Engineering, 2012, 23(2): 171-176.
[6] JAMWAL P K, XIE Sheng-quan, AW K C. Design analysis of a pneumatic muscle driven wearable parallel robot for anlde joint rehabilitation [C]∥ Mechatronics and Embedded Systems and Applications (MESA).Qingdao: IEEE, 2010: 403-408.
[7] TAO Guo-liang, ZHU Xiao-cong, YAO Bin, et al. Adaptive robust posture control of a pneumatic muscles driven parallel manipulator with redundancy [C]∥Proceedings of the 2007 American Control Conference.New York City,USA: IEEE, 2007: 3409-3413.
[8] 朱笑丛, 陶国良. 气动人工肌肉伺服平台的建模. 浙江大学学报:工学版 [J], 2004, 38(8): 1056-1060.
ZHU Xiao-cong, TAO Guo-liang. Modeling of a servo platform driven by pneumatic artificial muscles [J]. Journal of Zhejiang University :Engineering Science, 2004, 38(8): 1056-1060.
[9] TONDU B , LOPEZ P. Modeling and control of McKibben artificial muscle robot actuators [J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(3): 416.
[10] ZUO He, TAO Guo-liang, ZHU Xiao-cong. Modeling and enhancement of McKibben pneumatic muscle actuators [J]. Advanced Materials Research, 2012, 591-593: 793-796.
[11] ANDRIGHETTO P L, VALDIERO A C, CARLOTTO L. Study of the friction behavior in industrial pneumatic actuators [J]. ABCM Symposium Series in Mechatronics, 2006, 2(2): 369-376.
[12] RICHER E , HURMUZLU Y. A high performance pneumatic force actuator system Part I-Nonlinear mathematical model [J]. Issue of ASME Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 416-425.
[13] JAMES E B, BRIAN W M. Modeling, identification, and control of a pneumatically actuated, force controllable robot [J]. IEEE Transactions on Robotics and Automation, 1998, 14(5): 732-742.
[14] OLABY O, BRUN X, SESMAT S, et al. Characterization and modeling of a proportional valve for control synthesis [C]∥ Proceedings of the 6th JFPS International Symposium on Fluid Power. Tsukuba, Japan: Japan Fluid Power System Society, 2005: 77276.
[15] 孔祥臻, 刘延俊, 王勇等. 气动比例阀的死区补偿与仿真. 山东大学学报:工学版 [J]. 2006, 36(1): 99-102.
KONG Xiang-zhen, LIU Yan-jun, WANG Yong, et al. Compensation and simulation for the deadband of the pneumatic proportional valve. Journal of Shandong University :Engineering Science [J] .2006, 36(1): 99-102.
[16] YAO Bin, TOMIZUKA M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms [J]. Automatica, 2001, 37: 1305-1321.

[1] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[4] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[5] 费少华,刘丹,乔明杰,章明,方强. 端框移动平台双驱同步控制系统设计[J]. 浙江大学学报(工学版), 2016, 50(1): 85-92.
[6] 宋志强, 周献中, 李华雄. 多地面无人平台协同尾随跟踪[J]. 浙江大学学报(工学版), 2015, 49(12): 2349-2354.
[7] 仇翔, 宋海裕, 俞立. 基于平均驻留时间方法的牛鞭效应稳定化控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1909-1915.
[8] 王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005-2012.
[9] 覃展斌, 陈飞飞, 金波, 张璐璐. 电液比例阀阀心位置控制PID自整定方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1503-1508.
[10] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[11] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[12] 罗中海, 孟祥磊, 巴晓甫, 费少华, 方强. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2): 265-274.
[13] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[14] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.
[15] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.