Please wait a minute...
J4  2014, Vol. 48 Issue (3): 430-435    DOI: 10.3785/j.issn.1008-973X.2014.03.008
机械工程     
基于人机5杆模型的下肢外骨骼系统设计
杨巍1,张秀峰2,杨灿军1,吴海杰1
1.浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027;2.国家康复辅具研究中心,北京 100176
Design of a lower extremity exoskeleton
based on 5-bar human machine model
YANG Wei1, ZHANG Xiu-feng2, YANG Can-jun1, WU Hai-jie1 
1. State Key Laboratory of Fluid Power and Control,Zhejiang University,Hangzhou 310027,China;
2. National Research Center for Rehabilitation Technical Aids,Beijing 100176,China
 全文: PDF(2593 KB)   HTML
摘要:

针对日益增多的脑卒中病人和脊椎损伤病人康复训练需求,分析了人体下肢驱动自由度,设计出一种基于跑步机上行走训练的下肢外骨骼系统,将康复理疗师的训练经验与机器人的大功率以及可重复操作性集成于一体.利用人机耦合系统5杆模型,建立动力学方程并推导出髋、膝关节驱动力矩,为对应关节的驱动电机选型提供参考依据.为了获取正常人体在跑步机上行走的步态,利用光学动作捕捉系统采集正常人体在跑步机上行走时的特征点数据,结合人机耦合系统5杆模型推导出髋、膝关节角度值,作为患者在跑步机上康复训练的标准步态的参考.通过患者康复训练临床实验,验证了系统的可行性与可靠性,其实验结果与患者实际病情相符合.该外骨骼系统为脑卒中病人提供了一种科学的康复训练平台.

Abstract:

Considering the increasing requirements of rehabilitation training for stroke patients and spinal cord injury (SCI) patients, this work analyzed the  driving degrees of freedom of human lower limbs, and designed a lower extremity exoskeleton system based on treadmill, which combined the training experience of physiotherapists and the high-power, repeatability of robot. Based on the 5-bar human machine model, the dynamic equation was established and the driving torques of hip and knee joints were calculated, which could be used as reference of motor selection for corresponding joints. In order to get normal gait data on treadmill, optical motion capture system was used to obtain the data of feature points while a normal person was walking on the treadmill. And the 5-bar human machine model was used to obtain the gait data. The results were regarded as reference of standard gait data of the exoskeleton system. Clinical experiments were conducted, which proved the feasibility and reliability of the exoskeleton system, and the experimental results conformed to the symptom of the patients.This exoskeleton system provides stroke patients with a scientific training platform for rehabilitation.

出版日期: 2018-06-10
:  TH 122  
基金资助:

国家自然科学基金创新研究群体科学基金资助项目(51221004).

通讯作者: 杨灿军,男,教授,博导.     E-mail: ycj@zju.edu.cn
作者简介: 杨巍(1988-),男,博士生,从事外骨骼人机智能系统研究.E-mail:zjuaway@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨巍,张秀峰,杨灿军,吴海杰. 基于人机5杆模型的下肢外骨骼系统设计[J]. J4, 2014, 48(3): 430-435.

YANG Wei, ZHANG Xiu-feng, YANG Can-jun, WU Hai-jie. Design of a lower extremity exoskeleton
based on 5-bar human machine model. J4, 2014, 48(3): 430-435.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.03.008        http://www.zjujournals.com/eng/CN/Y2014/V48/I3/430

[1] 池明宇,赵春华,李文志,等. 偏瘫患者肢体康复方法[M]. 北京:人民卫生出版社,2007:3-6.
[2] YANG Yin, YANG Can-jun, LEE K, et al. Model-based fuzzy adaptation for control of a lower extremity rehabilitation exoskeleton[C]∥ International Conference on Advanced Intelligent Mechatronics. Singapore: Suntec Convention and Exhibition Center, 2009: 350-355.
[3] COLOMBO G.Treadmill training with the robotic orthosis “lokomat”: new technical features and results from multi-center trial in chronic spinal cord injury [J]. International Journal of Rehabilitation Research, 2004, 27(1): 92-93.
[4] VENEMAN J F, EKKELENKAMP R, KRUIDHOF R, et al. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots [J]. Robotics Research, 2006, 25(3):261-281.
[5] VENEMAN J F, KRUIDHOF R, HEKMAN E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 379-386.
[6] BANALA S K, KIM S H, AGRAWAL S K, et al. Robot assisted gait training with active leg exoskeleton (ALEX) [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(1):2-8.
[7] WINFREE K N, STEGALL P, AGRAWAL S K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II[C]∥ International Conference on Rehabilitation Robotics, Switzerland: Rehab Week Zurich, ETH Zurich Science City, 2011: 16.
[8] STEGALL P, WINFREE K N, AGRAWAL S K. Degrees-of-freedom of a robotic exoskeleton and human adaptation to new gait templates[C]∥ International Conference on Robotics and Automation.River Center, Saint Paul, Minnesota, USA: \
[s.n.\], 2012:4986-4990.
[9] 张晓超. 下肢康复训练机器人关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2009: 78-82.
Zhang Xiao-chao. Key Technology research on lower extremity robot for rehabilitation [D]. Haerbin: Harbin Engeering University, 2009: 7882.
[10] 冯治国. 步行康复训练助行腿机器人系统[D].上海: 上海大学, 2009: 11-15.
Feng Zhi-guo. On Exoskeleton robot for gait rehabilitation [D]. Shanghai: Shanghai University, 2009: 11-15.
[11] 牛彬. 可穿戴式的下肢步行外骨骼控制机理研究与实现[D]. 杭州: 浙江大学, 2006: 1011.
NIU Bin. Study on the design and control of a wearable exoskeleton leg for humans walking power augmentation [D]. Hangzhou: Zhejiang University, 2006: 10-11.
[12] RACINE J L. Control of a lower extremity exoskeleton for human performance amplification [D]. Berkeley: University of California,Berkeley, 2003:23-24.
[13] 贺廉云. 双足机器人的行走模型及步态规划[J]. 信息技术与信息化,2008(2):64-66.
HE Lian-yun. The walk model and the gait planning of biped robot[J]. Information Technology and Informatization, 2008(2):6466.
[14] 董亦鸣.下肢康复医疗外骨骼训练控制系统研究与初步实现[D]. 杭州: 浙江大学, 2008: 4054.
DONG Yi-ming. Study and realization of the training control system of a rehabilitation exoskeleton orthosis for lower limbs [D]. Hangzhou: Zhejiang University, 2006: 1011.
[15] 郑秀瑗,高云峰,贾书惠,等. 现代运动生物力学[M]. 北京: 国防工业出版社,2007.
[16] STANSFIELD B. Clinical gait analysis [EB/OL]. [2002-04-16]. http://www.clinicalgaitanalysis.com/.

[1] 刘征, 顾新建, 潘凯, 杨青海. 基于TRIZ的产品生态设计方法研究——融合规则和案例推理[J]. J4, 2014, 48(3): 436-444.
[2] 程吉祥,顾新建,代风,刘征. 基于BioTRIZ的产品创新设计过[J]. J4, 2014, 48(1): 35-41.
[3] 林晓华, 冯毅雄, 谭建荣. 基于免疫优化的产品系统可靠性参数区间预测方法[J]. J4, 2013, 47(6): 1013-1021.
[4] 应征, 王青, 李江雄, 柯映林,孙文博,韩永伟. 飞机数字化装配系统运动数据集成及监控技术[J]. J4, 2013, 47(5): 761-767.
[5] 应征, 章明, 王青, 柯映林. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. J4, 2013, 47(2): 209-215.
[6] 刘曦泽, 祁国宁, 傅建中, 樊蓓蓓, 许静. 集成形态学矩阵与冲突解决原理的设计过程模型[J]. J4, 2012, 46(12): 2243-2251.
[7] 黄雪梅, 张磊安, 魏修亭. 兆瓦级风机叶片静力加载过程D-MFAC控制[J]. J4, 2012, 46(12): 2280-2284.
[8] 林晓华,冯毅雄,谭建荣. 产品方案设计约束模型及其演化博弈算法求解[J]. J4, 2012, 46(3): 533-541.
[9] 罗成对,冯毅雄,谭建荣,安相华. 基于语义PROMETHEE的产品设计方案群体多准则求解[J]. J4, 2012, 46(3): 524-532.
[10] 安相华,冯毅雄,谭建荣. 基于Choquet积分与证据理论的
产品方案协同评价方法
[J]. J4, 2012, 46(1): 163-169.
[11] 马志勇, 邱清盈, 冯培恩, 沈萌红, 曾令斌. 机械对称性的概念体系及其应用方法[J]. J4, 2010, 44(12): 2354-2359.
[12] 张秀芬, 张树有, 伊国栋. 产品多粒度层次可拆卸性评价模型与方法[J]. J4, 2010, 44(3): 581-588.
[13] 江伟光, 武建伟, 吴参, 等. 基于本体的产品知识集成[J]. J4, 2009, 43(10): 1801-1807.
[14] 刘海强, 纪杨建, 祁国宁, 等. 支持多学科设计优化的产品集成设计知识模型研究[J]. J4, 2009, 43(10): 1841-1847.
[15] 傅玉颖, 潘晓弘, 王正肖. 模糊合作博弈下的供应链多目标优化[J]. J4, 2009, 43(09): 1644-1648.