Please wait a minute...
J4  2013, Vol. 47 Issue (3): 522-527    DOI: 10.3785/j.issn.1008-973X.2013.03.018
机械工程、能源工程     
盾构推进系统突变载荷顺应特性研究
侯典清, 龚国芳, 施虎, 王林涛
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao
State Key Laboratory of Fluid Power and Control,Zhejiang University,Hangzhou 310027,China
 全文: PDF  HTML
摘要:

针对盾构掘进过程中地质复杂多变、易出现大偏载及突变载荷的情况,提出了盾构推进系统顺应性概念及其评价指标,并基于对推进系统的参数化分析建立了顺应性计算模型,以某国产3.2 m盾构实验样机为例计算了推进系统顺应性. 在Matlab/Simulink仿真环境中,根据顺应性模型对调速溢流模式、减压大分区溢流模式、减压小分区溢流模式、减压主路溢流模式4种不同型式盾构推进系统进行了顺应性计算.为了验证盾构推进系统顺应效果,以某地铁工程遇到的实际负载为标准对4种盾构推进系统进行了顺应性效果评价分析.顺应性计算结果和顺应效果评价均表明:在同一突变载荷下4种不同型式盾构推进系统顺应性存在较大差别,顺应性与推进系统溢流元件、分区方式、工作参数、管道布置有关.推进液压系统顺应性可以作为衡量盾构承受外界突变载荷能力的指标,为新一代盾构推进系统研发设计提供了顺应性设计原则和优化目标.

Abstract:

Considering the complexity and changeability of geology and prone to large unbalanced and sudden loads during shield excavation, the concept and evaluation index of compliance of shield propulsion system was proposed. The calculation model of compliance was established based on parameterization analysis of propulsion system, then the compliance of propulsion system was calculated taking a certain 3.2 m domestic shield prototype for example. Compliance of four different types of shield propulsion system, including speed regulation and overflow mode, reduced pressure combined with large grouping overflow mode, reduced pressure combined with tiny grouping overflow mode and reduced pressure combined with main oil way overflow mode, was calculated under Matlab/Simulink simulation environment. In order to verify the compliance effect of shield propulsion system, evaluation and analysis of the compliance effect were carried out based on the actual loads met in a certain domestic metro engineering. The calculation results of the compliance and the evaluation of compliance effect both indicated that big differences existed in compliance among these four typical shields under the same sudden load, and the compliance was related to relief component, grouping pattern, working parameters and pipe layout of propulsion system. Therefore, the compliance of propulsion hydraulic system can be regarded as an index weighing the capacity that shield sustaining external sudden load, providing the compliance design philosophy and optimization objective for the new generation shield propulsion system.

出版日期: 2013-03-01
:  TH 137  
基金资助:

国家“973”重点基础研究发展规划资助项目(2007CB714004);国家自然科学基金资助项目(50975252).

通讯作者: 龚国芳,男,教授,博导.     E-mail: gfgong@zju.edu.cn
作者简介: 侯典清(1988-),男,硕士生,从事掘进装备电液控制技术研究.E-mail:houqing120@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.

HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load. J4, 2013, 47(3): 522-527.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.03.018        http://www.zjujournals.com/eng/CN/Y2013/V47/I3/522

[1] 胡国良,龚国芳,杨华勇.基于压力流量复合控制的盾构推进液压系统[J].机械工程学报,2006,42(6):124.
HU Guo-liang,GONG Guo-fang,YANG Hua-yong.The propulsion hydraulic system of shield tunneling machine based on pressure and flow compound control [J].Chinese Journal of Mechanical Engineering, 2006, 42(6):124.
[2] 曾晓星. 异质岩土工况下土压平衡盾构载荷等效及传递特性研究[D].上海:上海交通大学,2009:1-2.
ZENG Xiao-xing. Study on the loads equivalence and transferring behavior of the EPB shield machines penetrating in the heterogeneous geological conditions [D].Shanghai: Shanghai Jiaotong University, 2009: 1-2.
[3] 张凯之,余海东,来新民.复合地层中掘进的盾构机刀盘动态驱动转矩研究[J].中国机械工程,2008,21(6):643-647.
ZHANG Kai-zhi,YU Hai-dong,LAI Xin-min. Study on dynamic cutter head driving torque of shield tunneling in composite strata[J].China Mechanical Engineering, 2008,21(6):643-647.
[4] 邓颖聪. 盾构推进系统的分区建模与性能评价[D]. 上海:上海交通大学,2010:23-25.
DENG Ying-cong. Modeling and performance assessment for the grouping of the thrust system of the shield machine [D].Shanghai: Shanghai Jiaotong University, 2010:23-25.
[5] 熊有伦. 机器人操作[M]. 湖北:湖北科技出版社, 2002:180.
[6] KLABUNDE R E. Cardiovascular Physiology Concepts [M].Ohio: Lippincott Williams & Wilkins, 2004.
[7] ELMARAGHY H A , JOHNS B. An investigation into the compliance of SCARA robots. Part I: Analytical model[J]. Journal of Dynamic Systems, Measurement and Control, 1988, 110(3):18-22.
[8] 赵凯. 锻造操作机缓冲过程仿真与顺应性评价[D].上海:上海交通大学,2009:54-67.
ZHAO Kai. Simulation and evaluation of the compliance process for forging manipulators[D].Shanghai: Shanghai Jiaotong University, 2009:54-67.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[9] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[10] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[11] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[12] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[13] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[14] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.