计算机与控制工程 |
|
|
|
|
基于多层BiLSTM和改进粒子群算法的应用负载预测方法 |
蔡亮( ),周泓岑,白恒,才振功*( ),尹可挺,贝毅君 |
浙江大学 软件学院,浙江 宁波 315000 |
|
Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm |
Liang CAI( ),Hong-cen ZHOU,Heng BAI,Zhen-gong CAI*( ),Ke-ting YIN,Yi-jun BEI |
College of Software Technology, Zhejiang University, Ningbo 315000, China |
引用本文:
蔡亮,周泓岑,白恒,才振功,尹可挺,贝毅君. 基于多层BiLSTM和改进粒子群算法的应用负载预测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2414-2422.
Liang CAI,Hong-cen ZHOU,Heng BAI,Zhen-gong CAI,Ke-ting YIN,Yi-jun BEI. Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2414-2422.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.016
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2414
|
1 |
YAN Y Q, GUO P Predicting resource consumption in a Web server using ARIMA model[J]. Journal of Beijing Institute of Technology, 2014, 23 (4): 502- 510
|
2 |
CALHEIROS R N, MASOUMI E, RANJAN R, et al Workload prediction using ARIMA model and its impact on cloud applications' QoS[J]. IEEE Transactions on Cloud Computing, 2014, 3 (4): 449- 458
|
3 |
PRASSANNA J, VENKATARAMAN N Adaptive regressive holt–winters workload prediction and firefly optimized lottery scheduling for load balancing in cloud[J]. Wireless Networks, 2019, 1- 19
|
4 |
YAZDANIAN P, SHARIFIAN S. Cloud workload prediction using ConvNet and stacked LSTM [C]// 2018 4th Iranian Conference on Signal Processing and Intelligent Systems. Tehran: IEEE, 2018: 83-87.
|
5 |
谢晓兰, 张征征, 郑强清, 等 基于APMSSGA-LSTM 的容器云资源预测[J]. 大数据, 2019, 5 (6): 62- 72 XIE Xiao-lan, ZHANG Zheng-zheng, ZHENG Qiang-qing, et al Container cloud resource prediction based on APMSSGA-LSTM[J]. Big Data Research, 2019, 5 (6): 62- 72
|
6 |
LIU J, TAN X Y, WANG Y. CSSAP: software aging prediction for cloud services based on ARIMA-LSTM hybrid model [C]// 2019 IEEE International Conference on Web Services. Milan: IEEE, 2019: 283-290.
|
7 |
KUMAR S D, SUBHA D P. Prediction of depression from EEG signal using long short term memory [C]// 2019 3rd International Conference on Trends in Electronics and Informatics. Tirunelveli: IEEE, 2019: 1248-1253.
|
8 |
ZI?BA M, TOMCZAK S K, TOMCZAK J M Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction[J]. Expert Systems with Applications, 2016, 58: 93- 101
doi: 10.1016/j.eswa.2016.04.001
|
9 |
AKYUZ A O, UYSAL M, BULBUL B A, et al. Ensemble approach for time series analysis in demand forecasting: Ensemble learning [C]// 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications. Gdynia: IEEE, 2017: 7-12.
|
10 |
BIN Y, YANG Y, SHEN F, et al. Bidirectional long-short term memory for video description [C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 436-440.
|
11 |
ZENNAKI O, SEMMAR N, BESACIER L. Inducing multilingual text analysis tools using bidirectional recurrent neural networks [C]// 26th International Conference on Computational Linguistics: Technical Papers. Osaka: COLING. 2016: 450-460.
|
12 |
SCHUSTER M, PALIWAL K K Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681
doi: 10.1109/78.650093
|
13 |
SUN W, XU L, HUANG X, et al. Bidirectional LSTM for ionospheric vertical total electron content forecasting [C]// 2017 IEEE Visual Communications and Image Processing. St. Petersburg: IEEE, 2017: 1-4.
|
14 |
HU P, TONG J, WANG J, et al. A hybrid model based on CNN and Bi-LSTM for urban water demand prediction [C]// 2019 IEEE Congress on Evolutionary Computation. Wellington: IEEE, 2019: 1088-1094.
|
15 |
HAN S, ZHANG F, XI J, et al. Short-term vehicle speed prediction based on convolutional bidirectional LSTM networks [C]// 2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 4055-4060.
|
16 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995, 4: 1942-1948.
|
17 |
CHEN C, TWYCROSS J, GARIBALDI J M A new accuracy measure based on bounded relative error for time series forecasting[J]. PloS One, 2017, 12 (3): e0174202
doi: 10.1371/journal.pone.0174202
|
18 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
19 |
张利彪, 周春光, 马铭, 等 基于粒子群算法求解多目标优化问题[J]. 计算机研究与发展, 2004, 41 (7): 1286- 1291 ZHANG Li-biao, ZHOU Chun-guang, MA Ming, et al Solving multi-objective optimization problems based on particle swarm optimization[J]. Journal of Computer Research and Development, 2004, 41 (7): 1286- 1291
|
20 |
DING W, FANG W. Target tracking by sequential random draft particle swarm optimization algorithm [C]// 2018 IEEE International Smart Cities Conference. Kansas City: IEEE, 2018: 1-7.
|
21 |
何明慧, 徐怡, 王冉, 等 改进的粒子群算法优化神经网络及应用[J]. 计算机工程与应用, 2018, (19): 17 HE Ming-hui, XU Yi, WANG Ran, et al Improved particle swarm optimization neural network and its application[J]. Computer Engineering and Applications, 2018, (19): 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|