计算机与控制工程 |
|
|
|
|
基于过渡帧概念训练的微表情检测深度网络 |
付晓峰( ),牛力,胡卓群,李建军,吴卿 |
杭州电子科技大学 计算机学院,浙江 杭州 310018 |
|
Deep micro-expression spotting network training based on concept of transition frame |
Xiao-feng FU( ),Li NIU,Zhuo-qun HU,Jian-jun LI,Qing WU |
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
引用本文:
付晓峰,牛力,胡卓群,李建军,吴卿. 基于过渡帧概念训练的微表情检测深度网络[J]. 浙江大学学报(工学版), 2020, 54(11): 2128-2137.
Xiao-feng FU,Li NIU,Zhuo-qun HU,Jian-jun LI,Qing WU. Deep micro-expression spotting network training based on concept of transition frame. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2128-2137.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.008
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2128
|
1 |
HAPPY S L, ROUTRAY A Fuzzy histogram of optical flow orientations for micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2017, 10 (3): 394- 406
|
2 |
KHOR H Q, SEE J, PHAN R C W, et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition [C] // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an: IEEE, 2018: 667-674.
|
3 |
贲晛烨, 杨明强, 张鹏, 等 微表情自动识别综述[J]. 计算机辅助设计与图形学学报, 2014, 26 (9): 1385- 1395 BEN Xian-ye, YANG Ming-qiang, ZHANG Peng, et al Survey on automatic micro expression recognition methods[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26 (9): 1385- 1395
|
4 |
EKMAN P, FRIESEN W V Nonverbal leakage and clues to deception[J]. Psychiatry, 1969, 32 (1): 88- 106
doi: 10.1080/00332747.1969.11023575
|
5 |
EKMAN P. The philosophy of deception [M]. Oxford: Oxford University Press, 2009: 118-133.
|
6 |
BRINKE, PORTER L T Reading between the lies: identifying concealed and falsified emotions in universal facial expressions[J]. Psychological Science, 2008, 19 (5): 508- 514
doi: 10.1111/j.1467-9280.2008.02116.x
|
7 |
BERNSTEIN D M, LOFTUS E F How to tell if a particular memory is true or false[J]. Perspectives on Psychological Science, 2009, 4 (4): 370- 374
doi: 10.1111/j.1745-6924.2009.01140.x
|
8 |
RUSSELL T A, CHU E, PHILLIPS M L A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool[J]. British Journal of Clinical Psychology, 2006, 45 (4): 579- 583
doi: 10.1348/014466505X90866
|
9 |
SALTER F, GRAMMER K, RIKOWSKI A Sex differences in negotiating with powerful males[J]. Human Nature, 2005, 16 (3): 306- 321
doi: 10.1007/s12110-005-1013-4
|
10 |
PENG M, WU Z, ZHANG Z, et al. From macro to micro expression recognition: deep learning on small datasets using transfer learning [C] // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an: IEEE, 2018: 657-661.
|
11 |
付晓峰, 吴俊, 牛力 小数据样本深度迁移网络自发表情分类[J]. 中国图象图形学报, 2019, 24 (5): 753- 761 FU Xiao-feng, WU Jun, NIU Li Classification of small spontaneous expression database based on deep transfer learning network[J]. Journal of Image and Graphics, 2019, 24 (5): 753- 761
|
12 |
LIONG S T, SEE J, PHAN R C W, et al Spontaneous subtle expression detection and recognition based on facial strain[J]. Signal Processing: Image Communication, 2016, 47: 170- 182
doi: 10.1016/j.image.2016.06.004
|
13 |
LI X, YU J, ZHAN S. Spontaneous facial micro-expression detection based on deep learning [C] // 2016 IEEE 13th International Conference on Signal Processing. Chengdu: IEEE, 2016: 1130-1134.
|
14 |
DIANA B, RADU D, RAZVAN I, et al High-speed video system for micro-expression detection and recognition[J]. Sensors, 2017, 17 (12): 2913- 2931
doi: 10.3390/s17122913
|
15 |
ZHANG Z, CHEN T, MENG H, et al SMEConvNet: a convolutional neural network for spotting spontaneous facial micro-expression from long videos[J]. IEEE Access, 2018, 6: 71143- 71151
doi: 10.1109/ACCESS.2018.2879485
|
16 |
YAN W J, LI X, WANG S J, et al CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLOS ONE, 2014, 9 (1): 1- 8
|
17 |
LI X, PFISTER T, HUANG X, et al. A spontaneous micro-expression database: inducement, collection and baseline [C] // 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai: IEEE, 2013: 1-6.
|
18 |
QU F, WANG S J, YAN W J, et al CAS(ME)2: a database for spontaneous macro-expression and micro-expression spotting and recognition [J]. IEEE Transactions on Affective Computing, 2018, 9 (4): 424- 436
doi: 10.1109/TAFFC.2017.2654440
|
19 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
20 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
21 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.
|
22 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning [C] // AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 4-12.
|
23 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C] // 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
|
24 |
PAN S J, YANG Q A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359
doi: 10.1109/TKDE.2009.191
|
25 |
GLOROT X, BENGIO Y Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249- 256
|
26 |
EKMAN P, FRIESEN W V. Facial action coding system: a technique for the measurement of facial movement [M]. Palo Alto: Consulting Psychologists Press, 1978.
|
27 |
FAWCETT T An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27 (8): 861- 874
doi: 10.1016/j.patrec.2005.10.010
|
28 |
HAN Y, LI B J, LAI Y K, et al. CFD: A collaborative feature difference method for spontaneous micro-expression spotting [C] // 2018 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 1942-1946.
|
29 |
DAVISON A K, LANSLEY C, NG C C, et al. Objective micro-facial movement detection using facs-based regions and baseline evaluation [C] // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an: IEEE, 2018: 642-649.
|
30 |
LI X, HONG X, MOILANEN A, et al Towards reading hidden emotions: a comparative study of spontaneous micro-expression spotting and recognition methods[J]. IEEE Transactions on Affective Computing, 2018, 9 (4): 563- 577
doi: 10.1109/TAFFC.2017.2667642
|
31 |
DUQUE C A, ALATA O, EMONET R, et al. Micro-expression spotting using the Riesz pyramid [C] // 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 66-74.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|