计算机与控制工程 |
|
|
|
|
基于深度学习的遥感影像变化检测方法 |
王昶1,2( ),张永生1,*( ),王旭3,于英1 |
1. 中国人民解放军战略支援部队信息工程大学 地理空间信息学院,河南 郑州 450001 2. 辽宁科技大学 土木工程学院,辽宁 鞍山 114051 3. 辽宁生态职业技术学院 测绘工程学院,辽宁 沈阳 110101 |
|
Remote sensing image change detection method based on deep neural networks |
Chang WANG1,2( ),Yong-sheng ZHANG1,*( ),Xu WANG3,Ying YU1 |
1. School of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China 2. School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China 3. Surveying and Mapping Engineering Institute, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China |
引用本文:
王昶,张永生,王旭,于英. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2138-2148.
Chang WANG,Yong-sheng ZHANG,Xu WANG,Ying YU. Remote sensing image change detection method based on deep neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2138-2148.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.009
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2138
|
1 |
HUSSAIN M, CHEN D, CHENG A Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80 (2): 91- 106
|
2 |
BOVOLO F, BRUZZONE L A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (1): 218- 236
doi: 10.1109/TGRS.2006.885408
|
3 |
ZHANG M, ZHAO Y Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22 (1): 119- 131
|
4 |
FENG W, ZHANG Y. Object-oriented change detection for remote sensing images based on multi-scale fusion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151.
|
5 |
LI L, SHU N, WANG K Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartogrphica Sinica, 2014, 43 (9): 945- 953
|
6 |
CELIK T Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 772- 776
doi: 10.1109/LGRS.2009.2025059
|
7 |
MISHRA N S, GHOSH S, GHOSH A Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12 (8): 2683- 2692
doi: 10.1016/j.asoc.2012.03.060
|
8 |
STELIOS K, VASSILIOS C A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328- 1337
doi: 10.1109/TIP.2010.2040763
|
9 |
GONG M, ZHOU Z, MA J Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21 (4): 2141- 2151
doi: 10.1109/TIP.2011.2170702
|
10 |
GAO F, DONG J, LI B. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4): 1-14.
|
11 |
TAN K, JIN X, PLAZA A Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (8): 3339- 3451
|
12 |
GONG M, ZHAO J, LIU J Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (1): 125- 138
doi: 10.1109/TNNLS.2015.2435783
|
13 |
ZHANG X, CHEN X, LI F Change detection method for high resolution remote sensing images using deep learining[J]. Acta Geodaetica et Cartogrphica Sinica, 2017, 46 (8): 999- 1008
|
14 |
王昶, 王旭, 纪松 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53 (3): 143- 149 WANG Chang, WANG Xu, JI Song Strip noise removal of remote images by variation[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 143- 149
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|