Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2092-2099    DOI: 10.3785/j.issn.1008-973X.2020.11.004
土木工程     
自保温建筑不同末端间歇供暖的实测效果分析
陆江1(),王登辉2,3,赵康2,3,*(),刘诗韵3
1. 浙江科技学院 土木与建筑工程学院,浙江 杭州 310023
2. 浙江大学 平衡建筑研究中心,浙江 杭州 310007
3. 浙江大学 建筑工程学院,浙江 杭州 310058
Experimental performance of intermittent space heating with different terminals in a self-thermal insulation building
Jiang LU1(),Deng-hui WANG2,3,Kang ZHAO2,3,*(),Shi-yun LIU3
1. College of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310007, China
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2078 KB)   HTML
摘要:

为了探究适宜我国夏热冬冷地区自保温建筑的间歇供暖方式,搭建实验台测试辐射地板、风机盘管和散热器3种典型供暖方式间歇运行模式下的室内热环境和传热量;采用垂直温差、温度波动系数和时间常数比较不同供暖方式的室内热环境特征. 在室外平均温度为5 °C、空气源热泵提供50 °C热水的情况下,在利用辐射地板和风机盘管供暖时,室内操作温度均可以达到20.0 °C的设定值,满足热舒适需求;辐射地板房间由于向下热损失以及围护结构传热相对较多,耗热量较风机盘管房间高12%. 在利用辐射地板供暖时,室温的均匀性和稳定性优于风机盘管供暖;在自保温建筑中以操作温度衡量的启动时间常数为2.8 h. 结合热环境和耗热量情况给出辐射地板间歇供暖提前开启和关闭的运行建议.

关键词: 自保温建筑间歇供暖辐射地板风机盘管夏热冬冷地区    
Abstract:

In order to distinguish the proper heating methods for self-thermal insulation buildings in hot summer and cold winter zone of China, an experimental platform was built to test the indoor thermal environment and heat transfer of three typical heating modes, i.e., radiant floor, fan coil units and radiators, based on the intermittent space heating mode of buildings in this area. The indoor thermal environment characteristics of different heating modes were compared via the use of vertical temperature difference, temperature fluctuation coefficient and time constant. The indoor operating temperature reached the set value of 20.0 °C when radiant floor and fan coil units were used, meeting the requirement of thermal comfort, in the case of outdoor average temperature of 5 °C and hot water of 50 °C produced by an air source heat pump. Under the same operating temperature, the room with radiant floor heating consumed about 12% more heat than the fan-coil room due to the considerable downward heat loss and envelope heat transfer. Radiant floor heating was superior to fan coil heating in terms of uniformity and stability of indoor temperature, and the time constant of the startup phase measured in operation temperature in a self-thermal insulation room was 2.8 h. Operative suggestions are given for an early start and termination during intermittent space heating for the radiant floor heating system, given the thermal environment and heat consumption.

Key words: self-thermal insulation building    intermittent heating    radiant floor    fan coil unit    hot summer and cold winter zone
收稿日期: 2019-12-26 出版日期: 2020-12-15
CLC:  TU 111  
基金资助: 国家重点研发计划资助项目(2016YFC0700302);国家自然科学基金资助项目(51708489)
通讯作者: 赵康     E-mail: 13858019381@139.com;zhaok@zju.edu.cn
作者简介: 陆江(1970—),男,副教授,博士,从事建筑技术研究. orcid.org/0000-0001-7512-4735. E-mail: 13858019381@139.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陆江
王登辉
赵康
刘诗韵

引用本文:

陆江,王登辉,赵康,刘诗韵. 自保温建筑不同末端间歇供暖的实测效果分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2092-2099.

Jiang LU,Deng-hui WANG,Kang ZHAO,Shi-yun LIU. Experimental performance of intermittent space heating with different terminals in a self-thermal insulation building. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2092-2099.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2092

图 1  实验平台所在建筑南立面
围护结构 构造 K /(W·m?2·K?1
1)注:铺设保温板以减少不同供暖方式的相邻房间传热的影响
南/北外墙 20 mm砂浆+200 mm蒸压加气
混凝土+20 mm砂浆
0.71
东/西隔墙 200 mm 蒸压加气混凝土+
50 mm聚氨酯保温板1)
0.32
屋顶 30 mm砂子+120 mm钢筋混凝土+
50 mm聚氨酯保温板
0.41
楼板 120 mm钢筋混凝土 1.20
窗户 6 mm+12 A+6 mm双层玻璃,
铝合金窗框
3.40
户门 普通木门 2.00
表 1  围护结构热工参数
图 2  供暖系统示意图
图 3  3种供暖末端方式
图 4  温度、湿度和热流的测点位置示意图
测试参数 仪器 型号 精度
空气温度 温度、湿度自记仪 WSZY-1 ±0.2 °C
相对湿度 温度、湿度自记仪 WSZY-1 ±3%
表面温度 温度自记仪 WZY-1 ±0.2 °C
表面温度 温度、热流自记仪 WRZY-1 ±0.2 °C
表面热流 温度、热流自记仪 WRZY-1 ±5%
水温 铂电阻 PT100 ±0.1 °C
水体积流量 涡轮体积流量计 LWGY-25 ±0.5%
表 2  测试仪器与精度
图 5  测试期间室外温度
房间 供暖方式 运行时间 $ {\theta _{{\rm{a}},{\rm{set}}}}$/°C
A 辐射地板 每日20:00—次日8:00 19.0
B 风机盘管 每日20:00—次日8:00 21.0
C 散热器 每日20:00—次日8:00 20.0
表 3  实验房间空气温度的设定值
图 6  供暖末端的供回水温度
图 7  辐射地板供暖房间温度变化
图 8  风机盘管供暖房间温度变化
图 9  不同供暖末端的供热量和房间耗热量
图 10  房间耗热量的构成
图 11  间歇运行时垂直温度分布
供暖方式 cT /10?3
h=0.1 m h=0.7 m h=1.5 m h=2.0 m h=2.5 m 平均值
辐射地板 12.6 3.7 3.1 3.4 3.5 5.2
风机盘管 4.0 8.0 14.3 35.6 21.5 16.7
表 4  各供暖方式的波动系数
图 12  启动阶段室温变化
供暖方式 T
空气温度 辐射地面温度 非供暖表面温度 操作温度
辐射地板 2.5 h 2.1 h 3.2 h 2.8 h
风机盘管 3 min 6 min ? 4 min
表 5  启动阶段温升时间常数
图 13  建议采取的辐射地板间歇供暖运行方式
1 XU L, LIU J, PEI J, et al Building energy saving potential in hot summer and cold winter (HSCW) zone, China: influence of building energy efficiency standards and implications[J]. Energy Policy, 2013, 57: 253- 262
doi: 10.1016/j.enpol.2013.01.048
2 王智, 葛坚 烧结页岩多孔砖外墙T形热桥的模拟分析及优化[J]. 建筑技术, 2015, 46 (11): 1027- 1030
WANG Zhi, GE Jian Simulation analysis and optimization of sintered shale porous brick wall of T shaped bridge[J]. Architecture Technology, 2015, 46 (11): 1027- 1030
doi: 10.3969/j.issn.1000-4726.2015.11.016
3 刘华存, 葛坚, 陈淑琴 砌筑砂浆对蒸压加气混凝土砌体保温性能的影响[J]. 建筑技术, 2017, 48 (4): 427- 430
LIU Hua-cun, GE Jian, CHEN Shu-qin Effect of masonry mortar on thermal insulation of AAC masonry[J]. Architecture Technology, 2017, 48 (4): 427- 430
doi: 10.3969/j.issn.1000-4726.2017.04.026
4 LIU H, WU Y, LI B, et al Seasonal variation of thermal sensations in residential buildings in the hot summer and cold winter zone of China[J]. Energy and Buildings, 2017, 140: 9- 18
doi: 10.1016/j.enbuild.2017.01.066
5 赵康, 吴明洋, 佟振, 等 长江流域住宅分散式供暖改造案例及分析[J]. 暖通空调, 2013, 43 (6): 58- 63
ZHAO Kang, WU Ming-yang, TONG Zhen, et al Decentralized heating for residential building in Yangtze River basin: a reforming case and analysis[J]. Journal of HV and AC, 2013, 43 (6): 58- 63
6 南倩, 闫增峰 陕南地区空气源热泵低温热水地板辐射供暖系统运行方式研究[J]. 建筑与文化, 2018, 17 (8): 190- 191
NAN Qian, YAN Zeng-feng Research of optimizing modes for low temperature hot water floor heating system with air source heat pump[J]. Architecture and Culture, 2018, 17 (8): 190- 191
doi: 10.3969/j.issn.1672-4909.2018.08.077
7 LI J, WANG F, QU W, et al Research on residential energy efficiency technologies under the intermittent energy mode in hot summer and cold winter zone[J]. Advanced Materials Research, 2014, 1065-1069: 2195- 2198
doi: 10.4028/www.scientific.net/AMR.1065-1069.2195
8 董旭娟, 闫增峰, 王智伟, 等 夏热冬冷地区典型城市住宅供暖模式选择研究[J]. 西安建筑科技大学学报: 自然科学版, 2014, 46 (6): 865- 870
DONG Xu-juan, YAN Zeng-feng, WANG Zhi-wei, et al Study on selection of typical city residential heating mode in hot summer and cold winter zone[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2014, 46 (6): 865- 870
9 GAO Y, WU J, CHENG Y Study on the heating modes in the hot summer and cold winter region in China[J]. Procedia Engineering, 2015, 121: 262- 267
doi: 10.1016/j.proeng.2015.08.1067
10 HU S, YAN D, CUI Y, et al Urban residential heating in hot summer and cold winter zones of China: status, modeling, and scenarios to 2030[J]. Energy Policy, 2016, 92: 158- 170
doi: 10.1016/j.enpol.2016.01.032
11 GE F, GUO X, HU Z, et al Energy savings potential of a desiccant assisted hybrid air source heat pump system for residential building in hot summer and cold winter zone in China[J]. Energy and Buildings, 2011, 43 (12): 3521- 3527
doi: 10.1016/j.enbuild.2011.09.021
12 HEINZ Bach. 室内采暖工程[M]. 倪进昌, 译. 北京: 中国建筑工业出版社, 2010.
13 TIAN Z, LOVE J A A field study of occupant thermal comfort and thermal environments with radiant slab cooling[J]. Building and Environment, 2008, 43 (10): 1658- 1670
doi: 10.1016/j.buildenv.2007.10.012
14 IMANARI T, OMORI T, BOGAKI K Thermal comfort and energy consumption of the radiant ceiling panel system: comparison with the conventional all-air system[J]. Energy and Buildings, 1999, 30 (2): 167- 175
doi: 10.1016/S0378-7788(98)00084-X
15 LIN B, WANG Z, SUN H, et al Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings[J]. Building and Environment, 2016, 106: 91- 102
doi: 10.1016/j.buildenv.2016.06.015
16 ZEILER W, BOXEM G Effects of thermal activated building systems in schools on thermal comfort in winter[J]. Building and Environment, 2009, 44 (11): 2308- 2317
doi: 10.1016/j.buildenv.2009.05.005
17 SEBARCHIEVICI C, DAN D, SARBU I Performance assessment of a ground-coupled heat pump for an office room heating using radiator or radiant floor heating systems[J]. Procedia Engineering, 2015, 118: 88- 100
doi: 10.1016/j.proeng.2015.08.407
18 唐海达, 张涛, 刘晓华 长江流域住宅中混凝土辐射地板与风机盘管供暖性能实测[J]. 暖通空调, 2017, 47 (11): 97- 103
TANG Hai-da, ZHANG Tao, LIU Xiao-hua On-site measured performance of radiant slab floor and fan-coil unit heating systems for residences in Yangtze River basin[J]. Journal of HV and AC, 2017, 47 (11): 97- 103
19 葛坚, 王登辉, 赵康 夏热冬冷地区供暖房间冷风渗透影响因素[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1415- 1422
GE Jian, WANG Deng-hui, ZHAO Kang Influencing factors on infiltration rate of heating rooms in hot summer and cold winter zone[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1415- 1422
[1] 葛坚,王登辉,赵康. 夏热冬冷地区供暖房间冷风渗透影响因素[J]. 浙江大学学报(工学版), 2019, 53(7): 1415-1422.
[2] 傅新, 钱晓倩, 钱匡亮, 董凯, 阮方. 夏热冬冷地区采暖空调计算期确定方法[J]. 浙江大学学报(工学版), 2017, 51(4): 729-738.
[3] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[4] 朱炜, 王竹, 田轶威, 等. 夏热冬冷地区民居夏季环境实测及构造分析——以湖州市为例[J]. J4, 2009, 43(8): 1526-1531.