Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1630-1636    DOI: 10.3785/j.issn.1008-973X.2019.08.022
化学工程、生物工程     
基于功率耦合和检波的高强度聚焦超声驱动功率监测技术
庞博1(),朱仕政1,白景峰1,2,吉翔1,2,*()
1. 上海交通大学 生物医学工程学院 生物医学仪器研究所,上海 200030
2. 上海Med-X工程技术研究中心,上海 200030
Measurement technique of high-intensity focused ultrasound driving power based on power coupler and detector
Bo PANG1(),Shi-zheng ZHU1,Jing-feng BAI1,2,Xiang JI1,2,*()
1. Biomedical Instrumentation Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
2. Shanghai Med-X Engineering Center for Medical Equipment and Technology, Shanghai 200030, China
 全文: PDF(873 KB)   HTML
摘要:

为了实现易于集成到高强度聚焦超声(HIFU)系统中的驱动功率监测技术,通过监测驱动功率间接监测声功率,进而确保热消融的有效性和安全性,采用C5948双定向耦合器与AD8363均方根功率检波器,搭建驱动功率在线监测装置. 该装置包括功率耦合单元、功率检测单元和数据采集单元. 使用电压峰峰值为20~200 mV的不同频率的信号源,将该装置接入HIFU系统并测量入射功率、反射功率及实际加载功率. HIFU系统的现有功率监测方法主要有2种,即测量HIFU换能器电压、电流及其相位差和使用商用功率计,将这2种方法与所提出装置进行对比. 结果表明使用本装置测量入射功率和反射功率的误差低于10%,实际加载功率的测量误差低于5%,且误差来源于耦合器的方向性.

关键词: 功率检波功率耦合方向性电压驻波比(VSWR)高强度聚焦超声(HIFU)    
Abstract:

To implement a driving power measurement technique that can be easily integrated in existing high-intensity focused ultrasound (HIFU) systems, to indirectly monitor the acoustic power output by the measurement of the driving power, and then to ensure the efficacy and the safety of the HIFU thermal ablation, an on-line power monitor was designed based on C5948 dual directional coupler and AD8363 root mean square power detector. The equipment was composed of power coupling module, power detecting module and data acquisition module. It was connected in HIFU system to measure the forward and reflected powers as well as the net power using signals of different frequencies with the peak-peak voltages ranging from 20 mV to 200 mV. There are two existing main methods of power monitoring in the HIFU system, i.e. measuring the voltage, current and phase difference of the HIFU transducer as well as using the commercial power meter. The proposed equipment was compared with the above two methods. Results demonstrated that the errors of measuring forward and reflected powers were lower than 10% using the proposed equipment. The measurement error of actual loaded power was lower than 5%, and the errors might come from the directivity of the used coupler.

Key words: power detector    power coupler    directivity    voltage standing wave ratio (VSWR)    high-intensity focused ultrasound (HIFU)
收稿日期: 2018-06-12 出版日期: 2019-08-13
CLC:  TM 933  
通讯作者: 吉翔     E-mail: pangbo2017@foxmail.com;xiangji@sjtu.edu.cn
作者简介: 庞博(1994—),女,硕士生,从事医学仪器研究. orcid.org/0000-0002-8726-5647. E-mail: pangbo2017@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
庞博
朱仕政
白景峰
吉翔

引用本文:

庞博,朱仕政,白景峰,吉翔. 基于功率耦合和检波的高强度聚焦超声驱动功率监测技术[J]. 浙江大学学报(工学版), 2019, 53(8): 1630-1636.

Bo PANG,Shi-zheng ZHU,Jing-feng BAI,Xiang JI. Measurement technique of high-intensity focused ultrasound driving power based on power coupler and detector. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1630-1636.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1630

图 1  驱动功率监测装置示意图
部件/仪器 型号 厂商
双定向耦合器 C5948 Werlatone,Inc,USA
衰减器 HMC658LP2E ADI,USA
功率检波器 AD8363 ADI,USA
微控制器 STM32F103VET6 意法半导体,瑞士
信号发生器 33220 Keysight,USA
功率放大器 1020L E&I,USA
功率计 4421 Bird,USA
功率传感器 4025 Bird,USA
电压探头 N2790A Keysight,USA
电流探头 1147B Keysight,USA
偏移校正夹具 U1880A Keysight,USA
表 1  驱动功率监测装置部件及测量仪器
图 2  本装置驱动功率测量电路连接图
图 3  本装置与功率计测量对比电路连接图
图 4  本装置与电压-电流-相位角测量对比电路连接图
图 5  1.0 MHz频率下本装置与功率计所测得入射、反射功率的测量误差
图 6  1.4 MHz频率下本装置与功率计所测得入射、反射功率的测量误差
图 7  本装置与电压-电流-相位角方式所测得的加载功率的相对误差
图 8  定向耦合器检测所得反射功率与其方向性曲线
图 9  定向耦合器检测所得反射功率误差与其方向性曲线
方式 成本 实现多路 集成难易度
电压-电流-相位角
功率计
本装置
表 2  本装置与现有驱动功率测量方法的对比
1 CHEN J, LI Y, WANG Z, et al Evaluation of high-intensity focused ultrasound ablation for uterine fibroids: an IDEAL prospective exploration study[J]. BJOG: An International Journal of Obstetrics and Gynaecology, 2018, 125 (3): 354- 364
doi: 10.1111/1471-0528.14689
2 JAIN A, TIWARI A, VERMA A, et al Ultrasound-based triggered drug delivery to tumors[J]. Drug Delivery and Translational Research, 2018, 8 (1): 150- 164
doi: 10.1007/s13346-017-0448-6
3 MARUVADA S, HARRIS G R, HERMAN B A, et al Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique[J]. Journal of the Acoustical Society of America, 2007, 121 (3): 1434- 1439
doi: 10.1121/1.2431332
4 MARUVADA S, LIU Y, SONESON J E, et al Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields[J]. Journal of the Acoustical Society of America, 2015, 137 (4): 1704- 1713
doi: 10.1121/1.4916280
5 HALLER J, JENDERKA K V, SHAW A, et al Metrology of high-intensity therapeutic ultrasound within the EMRP project 'External Beam Cancer Therapy'. characterization of sources[J]. Metrologia, 2012, 49 (5): S267- S270
doi: 10.1088/0026-1394/49/5/S267
6 ELLENS N, PARTANEN A Pre-clinical MRI-guided focused ultrasound: a review of systems and current practices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64 (1): 291- 305
doi: 10.1109/TUFFC.2016.2609238
7 MCLAUGHLAN J, RIVENS I, LEIGHTON T, et al A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound[J]. Ultrasound in Medicine and Biology, 2010, 36 (8): 1327- 1344
doi: 10.1016/j.ultrasmedbio.2010.05.011
8 KARABOCE B, GULMEZ Y, BILGIC E, et al. Comparison of the input electrical power measurement methods for HIFU transducers [C]// IEEE International Symposium on Medical Measurements and Applications. Lisbon : IEEE, 2014: 643-648.
9 KARABOCE B, GULMEZ Y, RAJAGAPOL S, et al. Instantaneous input electrical power measurements of HITU transducer [C]// 26th International Conference on Low Temperature Physics. Beijing: IOP Publishing, 2011: 279012011.
10 BUCHANAN M T, HYNYNEN K Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia[J]. IEEE Transactions on Biomedical Engineering, 1994, 41 (12): 1178- 1187
doi: 10.1109/10.335866
11 LAFON C, CHAPELON J Y, PRAT F, et al Design and preliminary results of an ultrasound applicator for interstitial thermal coagulation[J]. Ultrasound in Medicine and Biology, 1998, 24 (1): 113- 122
doi: 10.1016/S0301-5629(97)00203-2
12 TUNG Y, LIU H, WU C, et al Contrast-agent-enhanced ultrasound thermal ablation[J]. Ultrasound in Medicine and Biology, 2006, 32 (7): 1103- 1110
doi: 10.1016/j.ultrasmedbio.2006.04.005
13 EL-DESOUKI M M, HYNYNEN K Driving circuitry for focused ultrasound noninvasive surgery and drug delivery applications[J]. Sensors, 2011, 11 (1): 539- 556
doi: 10.3390/s110100539
14 MARUVADA S, LIU Y, HERMAN B A, et al. Temperature measurements in tissue-mimicking material during HIFU exposure [C]// 8th International Symposium on Therapeutic Ultrasound. Minneapolis: AIP, 2008: 286-290.
15 QIU W, ZHOU J, CHEN Y, et al A portable ultrasound system for non-invasive ultrasonic neuro-stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25 (12): 2509- 2515
doi: 10.1109/TNSRE.2017.2765001
16 LIU H, JAN C, CHU P, et al Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery[J]. IEEE Transactions on Biomedical Engineering, 2014, 61 (4): 1350- 1360
doi: 10.1109/TBME.2014.2305723
17 HUANG G, CHUNG H, LIU H, et al. A transmit/receive 256-channel ultrasound phased array driving system design and strategy for transrib thermal therapy (transmit/receive 256-channel ultrasound phased array system) [C]// IEEE International Ultrasonics Symposium (IUS). Orlando: IEEE, 2011: 494-497.
18 LIU H, CHEN H, KUO Z, et al Design and experimental evaluations of a low-frequency hemispherical ultrasound phased-array system for transcranial blood-brain barrier disruption[J]. IEEE Transactions on Biomedical Engineering, 2008, 55 (10): 2407- 2416
doi: 10.1109/TBME.2008.925697
19 廖瑞金, 谭坚文, 王华, 等 基于脉冲响应的高强度聚焦超声换能器电阻抗测量方法[J]. 高电压技术, 2012, 38 (6): 1292- 1298
LIAO Rui-jin, TAN Jian-wen, WANG Hua, et al Electrical impedance measurement method based on impulse response for high intensity focused ultrasound transducer[J]. High Voltage Engineering, 2012, 38 (6): 1292- 1298
20 ZHU S, JI X, BAI J. Design of power monitor for power measurement in HIFU systems [C]// 2017 10th International Congress on Image and Signal Processing. Shanghai: IEEE, 2017: 1-6.
21 石爱民, 王贤武, 文良华, 等 基于定向耦合器的高频功率测量[J]. 强激光与粒子束, 2011, 23 (4): 1061- 1064
SHI Ai-ming, WANG Xian-wu, WEN Liang-hua, et al Directional coupler-based measurement of high-frequency power[J]. High Power Laser and Particle Beams, 2011, 23 (4): 1061- 1064
[1] 甘智华,吴英哲,袁园,邱利民,张学军,张小斌,徐旭. 120 Hz单级脉管制冷机理论与实验[J]. J4, 2011, 45(11): 2014-2019.
[2] 朱方明 胡骏. 基于PMC基底与PBG覆层的新型微带天线的研究[J]. J4, 2008, 42(6): 969-972.