Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1431-1437    DOI: 10.3785/j.issn.1008-973X.2019.08.001
土木与建筑工程     
导管架基础海上风机动力响应数值分析
周文杰1(),王立忠1,汤旅军2,国振1,*(),芮圣洁1,黄玉佩2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江省电力设计院,浙江 杭州 310012
Numerical analysis of dynamic responses of jacket supported offshore wind turbines
Wen-jie ZHOU1(),Li-zhong WANG1,Lv-jun TANG2,Zhen GUO1,*(),Sheng-jie RUI1,Yu-pei HUANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Design Institute, Hangzhou 310012, China
 全文: PDF(1778 KB)   HTML
摘要:

针对导管架基础海上风机(OWTs),开展台风极端循环荷载下整体结构的动力响应数值计算与分析. 在数值计算中分别采用美国石油学会(API)规范的系列桩-土相互作用模型(p-yt-zQ-z)、可考虑桩-土界面竖向强度和刚度循环弱化效应的弹塑性t-z模型以及桩-土侧向弹塑性p-y模型. 数值研究结果表明,t-z弹簧对导管架基础海上风机泥面处抗倾覆弯矩的贡献最大;p-y弹簧的贡献可能为负,其主要作用为抵抗水平力;Q-z弹簧的贡献较小,可忽略不计. 考虑t-z弹簧的循环弱化效应会大大增加基础顶点处的转角响应;考虑t-zp-y弹簧循环弱化耦合作用,导管架基础的平动更为明显,基础顶点处的位移响应明显增大. 在工程设计中须对桩-土循环弱化效应予以充分考虑.

关键词: 海上风机导管架基础动力响应桩基循环弱化弹塑性t-z模型    
Abstract:

For jacket supported offshore wind turbines (OWTs), numerical calculations and analysis were performed to investigate the dynamic responses of the whole structures under extreme cyclic loadings of typhoon condition. The series of pile-soil interaction models (p-y, t-z, Q-z) in the code of American Petroleum Institute (API), an elastoplastic t-z model considering the cyclic degradation of strength and stiffness axially in the pile-soil interface as well as an elastoplastic p-y model representing the lateral behaviors were used in the numerical simulations. Results show that the largest proportion of the anti-overturning moment at the mudline of jacket supported OWT is provided by the t-z spring. A negative contribution to the anti-overturning moment may be caused by the p-y spring, and the main function of p-y spring is to resist the horizontal loadings. The contribution from the Q-z spring is small and negligible. The rotation response at the top of jacket foundation may increase obviously with the consideration of the cyclic degradation effect of t-z spring. Considering the coupling degradation effects of the t-z and p-y springs, the translation of the jacket foundation will be more obvious and the displacement response at the top of the foundation will increase significantly. Thus the effects of the pile-soil cyclic degradation should be considered adequately in the engineering design.

Key words: offshore wind turbine    jacket foundation    dynamic response    pile    cyclic degradation    elastoplastic t-z model
收稿日期: 2019-01-06 出版日期: 2019-08-13
CLC:  TU 473  
通讯作者: 国振     E-mail: zhouwenjiesd@163.com;nehzoug@163.com
作者简介: 周文杰(1993—),男,博士生,从事海上风机基础研究. orcid.org/0000-0002-4723-1012. E-mail: zhouwenjiesd@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周文杰
王立忠
汤旅军
国振
芮圣洁
黄玉佩

引用本文:

周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.

Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1431

图 1  导管架基础海上风机模型示意图
模型参数 数值
内摩擦角φ/(°) 39
地基弹性模量ηh/(N·m?3 3.4×107
p-y曲线形状参数hs 0.1
刚度衰减参数αd 0.001
有效重度γ'/(KN·m?3 10.4
表 1  弹塑性p-y模型参数
图 2  考虑循环弱化的弹塑性t-z模型
模型参数 数值 模型参数 数值
δ/(°) 21.5 B 2.5
z50/mm 0.5 a 0.04
h 4.0 b 0.5
τr/τu0 0.317
表 2  标定后的弹塑性t-z模型参数
图 3  t-z模型模拟结果与等常刚度界面剪切试验结果的对比
计算工况 p-y模型 t-z模型 Q-z模型
1 API API API
2 API 弹塑性 API
3 弹塑性 API API
4 弹塑性 弹塑性 API
表 3  不同桩-土相互作用计算工况
模型 φ/(°) δ/(°) Nq A γ'/(KN·m?3
p-y模型 39 ? ? 0.9 10
t-z模型 ? 21.5 ? ? 10
Q-z模型 ? ? 20 ? 10
表 4  API规范的p-y、t-z、Q-z模型参数
几何参数 数值
转子、轮毂、机舱集中质量/t 466.8
塔筒长度/m 73.0
塔筒底部直径/m 5.5
导管架部分高度/m 44.6
导管架顶部根开/m 12.0
导管架底部根开/m 22.0
桩长/m 50.0
桩径/m 2.0
桩壁厚/mm 30.0
表 5  导管架基础海上风机主要参数
图 4  导管架基础泥面处弯矩计算示意图
图 5  各部分弹簧对泥面处抗倾覆弯矩贡献时程图
图 6  导管架基础顶点处转角响应时程图
图 8  导管架基础顶点处竖向位移响应时程图
图 7  导管架基础顶点处水平位移响应时程图
1 林楚 海上风电坐稳世界第三"十三五"目标有望完成[J]. 电力系统装备, 2017, (9): 18- 21
LIN Chu The goal of stabilizing offshore wind power in the 13th Five-Year Plan is expected to be fulfilled[J]. Equipment Electric Power System Equipment, 2017, (9): 18- 21
2 ABHINAV K A, SAHA N Stochastic response of jacket supported offshore wind turbines for varying soil parameters[J]. Renewable Energy, 2017, 101: 550- 564
doi: 10.1016/j.renene.2016.09.019
3 ACHMUS M, ABDEL-RAHMAN K, SCHAEFER D, et al. Capacity degradation method for driven steel piles under cyclic axial loading [C]// Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference. San Francisco: [s. n.], 2017: 362-368.
4 罗超, 曹文胜 台风对我国海上风电开发的影响[J]. 能源与环境, 2013, (3): 2- 3
LUO Chao, CAO Wen-shen The influence of typhoon on offshore wind power development in China[J]. Energy and Environment, 2013, (3): 2- 3
doi: 10.3969/j.issn.1672-9064.2013.03.001
5 American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design: RP 2A-WSD [S]. Washington: API Publishing Services, 2000: 56-67.
6 WEI S, PARK H C, CHUNG C W, et al Soil-structure interaction on the response of jacket-type offshore wind turbine[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2 (2): 139- 148
doi: 10.1007/s40684-015-0018-7
7 ABHINAV K A, SAHA N Nonlinear dynamical behavior of jacket supported offshore wind turbines in loose sand[J]. Marine Structures, 2018, 57: 133- 151
doi: 10.1016/j.marstruc.2017.10.002
8 ABHINAV K A, SAHA N Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 66- 79
doi: 10.1016/j.soildyn.2015.03.002
9 Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Oslo: Det Norske Veritas, 2013: 173-174.
10 黄茂松, 马昊, 李森, 等 软黏土中水平受荷桩的静力和循环p–y曲线 [J]. 岩土工程学报, 2017, 39 (增2): 9- 12
HUANG Mao-song, MA Hao, LI Sen, et al Static and cyclic p-y curves for laterally loaded piles in soft clay [J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (增2): 9- 12
11 朱斌, 熊根, 刘晋超, 等 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35 (10): 1807- 1815
ZHU Bin, XIONG Gen, LIU Jin-chao, et al Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1807- 1815
12 刘红军, 张冬冬, 吕小辉, 等 循环荷载下饱和粉土地基单桩水平承载特性试验研究[J]. 中国海洋大学学报: 自然科学版, 2015, 45 (1): 76- 82
LIU Hong-jun, ZHANG Dong-dong, LV Xiao-hui, et al Model tests on lateral bearing capacity of single piles under cyclic loads in saturated silt[J]. Periodical of Ocean University of China, 2015, 45 (1): 76- 82
13 ACHMUS M, KUO Y S, ABDELRAHMAN K Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36 (5): 725- 735
doi: 10.1016/j.compgeo.2008.12.003
14 胡安峰, 张光建, 贾玉帅, 等 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. 浙江大学学报: 工学版, 2014, 48 (4): 721- 726
HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, et al Application of degradation model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of Zhejiang University: Engineering Science,, 2014, 48 (4): 721- 726
15 苏栋 弹塑性p–y模型及非线性地基梁的增量有限元法 [J]. 岩土工程学报, 2012, 34 (8): 1469- 1474
SU Dong Elastoplastic p-y model and incremental finite element method for nonlinear foundation beams [J]. Journal of Geotechnical Engineering, 2012, 34 (8): 1469- 1474
16 ZHOU W J, WANG L Z, GUO Z, et al. A novel t-z model to predict the pile responses under axial cyclic loadings [J]. Computers and Geotechnics, 2019, 112: 120-134.
17 苏栋, 赵鹏, 高翔, 等 考虑泊松效应影响的弹塑性荷载传递模型[J]. 岩土力学, 2015, 36 (10): 2799- 2803
SU Dong, ZHAO Peng, GAO Xiang, et al Elastoplastic load transfer model considering Poisson effect[J]. Rock and Soil Mechanics, 2015, 36 (10): 2799- 2803
18 SU D, YAN W M A multidirectional p–y model for lateral sand-pile interactions [J]. Soils and Foundations, 2013, 53 (2): 199- 214
doi: 10.1016/j.sandf.2013.02.002
19 DAFALIAS Y F Bounding surface plasticity. I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112 (9): 966- 987
doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
20 LI X S A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52 (3): 173- 186
doi: 10.1680/geot.2002.52.3.173
21 AIREY D W, AL-DOURI R H, POULOS H G Estimation of pile friction degradation from shear box tests[J]. Geotechnical Testing Journal, 1992, 15 (4): 388- 392
doi: 10.1520/GTJ10253J
22 TABUCANON J T, AIREY D W, POULOS H G Pile skin friction in sands from constant normal stiffness tests[J]. Geotechnical Testing Journal, 1995, 18 (3): 350- 364
doi: 10.1520/GTJ11004J
23 JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development: technical report NREL/TP-500-38060 [R]. Colorado: U. S. National Renewable Energy Laboratory, 2009: 12-13.
[1] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[2] 吴君涛,王奎华,刘鑫,孙梵. 基于既有桩基振动理论反演的桩周土动态响应解[J]. 浙江大学学报(工学版), 2020, 54(3): 521-528.
[3] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[4] 李东黎,晏鄂川,冯斌,蔡袁强. 海底碎屑流对海洋桩的冲击[J]. 浙江大学学报(工学版), 2019, 53(12): 2342-2347.
[5] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[6] 秦培江, 马永亮, 韩超帅, 曲先强. 海上风机支撑结构的频域疲劳评估方法研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1712-1719.
[7] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[8] 祝周杰, 朱斌, 李涛, 王路君, 文凯. 砂土中海上风机四桩导管架基础水平受荷分析方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2150-2157.
[9] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[10] 王忠瑾,谢新宇,方鹏飞,李金柱,金伟良. 刚性长短组合桩的非线性沉降计算分析[J]. J4, 2014, 48(3): 463-470.
[11] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[12] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[13] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.
[14] 史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.
[15] 王奎华,王宁,吴文兵. 预应力管桩焊接缝对桩基完整性检测的影响[J]. J4, 2012, 46(9): 1625-1632.