Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1415-1422    DOI: 10.3785/j.issn.1008-973X.2019.07.022
交通工程、土木工程     
夏热冬冷地区供暖房间冷风渗透影响因素
葛坚(),王登辉,赵康*()
浙江大学 建筑工程学院,浙江 杭州 310058
Influencing factors on infiltration rate of heating rooms in hot summer and cold winter zone
Jian GE(),Deng-hui WANG,Kang ZHAO*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1770 KB)   HTML
摘要:

对夏热冬冷地区住宅房间供暖时的室外冷风渗透量及影响因素开展实测研究. 采用示踪气体法,在实验房间中测试不同供暖方式及室内外温差情况下,房间换气次数的变化规律. 测试结果表明,在相同的门窗密闭情况下,当供暖房间室内、外温差达到6~8 °C时,换气量比无供暖时增加35%~40%;在相同的室内、外温差下,采用对流送风方式时的房间换气次数略大于采用地板辐射供暖时的换气次数;在该地区设计住宅供暖系统时,应考虑采用不同的供暖方式对室内、外温差引起的渗风量增加的影响.

关键词: 夏热冬冷地区渗风示踪气体法送风供暖辐射供暖    
Abstract:

The flow rate of air infiltration and corresponding influencing factors were measured and analyzed. The air exchange rates with different heating methods and temperature difference between the indoor and outdoor air were tested in the experiment room by using the tracer gas method. The test results show that the air exchange rate in heating room increases by 35%-40% compared with that without heating when the temperature difference between the room and the outside reaches 6-8 °C under the same conditions of the airtightness of doors and windows. As to the influence of the heating methods on the air exchange rate, it is slightly larger when the room is heated by supplying hot air than that in the room with radiant floor heating methods. The increase in the air infiltration caused by space heating should be considered when designing the residential heating system in this region.

Key words: hot summer and cold winter zone    air infiltration rate    tracer gas method    warm-air heating    radiant floor heating
收稿日期: 2018-10-23 出版日期: 2019-06-25
CLC:  TU 111  
通讯作者: 赵康     E-mail: gejian1@zju.edu.cn;zhaok@zju.edu.cn
作者简介: 葛坚(1969?),女,教授,从事建筑热工和绿色建筑的研究. orcid.org/0000-0002-1619-575X. E-mail: gejian1@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
葛坚
王登辉
赵康

引用本文:

葛坚,王登辉,赵康. 夏热冬冷地区供暖房间冷风渗透影响因素[J]. 浙江大学学报(工学版), 2019, 53(7): 1415-1422.

Jian GE,Deng-hui WANG,Kang ZHAO. Influencing factors on infiltration rate of heating rooms in hot summer and cold winter zone. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1415-1422.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1415

图 1  实验楼照片和测试房间示意图
图 2  供暖系统原理图
测试参数 仪器型号 精度
注:1)该型号CO2检测仪用于验证测试房间CO2的均匀性.
$\varphi$(CO2) Telaire 7001 ±5×10?5或±5%
$\varphi$(CO2) WEZY-11) ±7.5×10?5
温度 HOBO U12 ± 0.35 °C
风速 WFDYZY-1 ± 0.05 m/s或5%
表 1  测试仪器与精度
图 3  测点位置示意图
图 4  不同高度处CO2体积分数比较
h/m δ/% h/m δ/%
0.7 2.8 1.5 2.8
1.2 2.7 2.0 2.9
表 2  不同高度处CO2体积分数的相对误差
图 5  不同位置CO2体积分数变化情况
位置 δ 位置 δ
测点1 1.0 测点3 1.8
测点2 1.8 测点4 1.0
表 3  各测点CO2体积分数的相对误差
位置 n/h?1 δ/%
测点1 1.037 1.4
测点2 0.974 4.7
测点3 1.109 8.5
测点4 0.969 5.2
平均值 1.022 ?
表 4  依据各测点CO2体积分数值计算的换气次数
图 6  窗户有/无密封毛条的照片
图 7  门缝有/无密封条的照片
工况 窗的密闭情况 门的密闭情况
设置毛条,无缝隙 设置胶条,无缝隙
无毛条,缝隙面积约为29.2 cm2 设置胶条,无缝隙
设置毛条,无缝隙 无胶条,缝隙面积约为72.0 cm2
无毛条,缝隙面积约为29.2 cm2 无胶条,缝隙面积约为72.0 cm2
表 5  不同门窗密闭情况的工况
图 8  不同门窗密闭情况下室内外CO2体积分数的变化情况
工况 θin/°C θout/°C Δθ/°C $\bar v$/(m·s?1 n/h?1
30.5 24.4 6.1 0.1 0.000
28.7 22.5 6.2 1.1 0.497
30.4 24.9 5.5 0.2 1.272
30.7 24.4 6.3 0.8 1.805
表 6  不同门窗密闭情况下房间换气次数及相应的外环境参数
图 9  不供暖时室内外CO2体积分数变化情况
工况 供暖形式 θin/°C θout/°C Δθ/°C $\bar v$/(m·s?1 n/h?1
C1 对流送风 27.3 23.8 3.5 0.98 1.114
C2 对流送风 29.4 25.4 4.0 0.23 1.253
C3 对流送风 29.1 24.4 4.7 0.74 1.282
C4 对流送风 27.6 21.3 6.3 0.73 1.420
表 7  对流送风供暖时房间换气次数及相应的外环境参数
图 10  对流送风供暖时室内外CO2体积分数变化情况
图 11  对流送风供暖时房间换气次数变化规律
工况 供暖形式 θin/°C θout/°C Δθ/°C $\bar v$/(m·s?1 n/h?1
R1 辐射供暖 26.7 22.3 4.4 0.67 1.183
R2 辐射供暖 27.3 21.8 5.5 0.72 1.332
R3 辐射供暖 28.6 22.3 6.3 0.69 1.395
R4 辐射供暖 27.0 19.8 7.2 0.63 1.414
表 8  辐射地板供暖时房间换气次数及相应的外环境参数
图 12  辐射地板供暖时室内外CO2体积分数变化情况
图 13  辐射地板供暖时房间换气次数变化规律
图 14  采用不同供暖方式时房间换气次数的比较
1 JOKISALO J, KURNITSKI J.Simulation of energy consumption in typical Finnish detached house [R].Espoo, Finland: Helsinki University of Technology, 2002.
2 汪静 关于房屋气密性检测的实践与经验分享[J]. 建设科技, 2014, (18): 74- 77
WANG Jing Practice and experience sharing of housing airtightness testing[J]. Construction Science and Technology, 2014, (18): 74- 77
doi: 10.3969/j.issn.1671-3915.2014.18.030
3 周翔, 张淇淇, 张静思, 等 上海地区住宅冬季室内环境调研及热需求分析[J]. 暖通空调, 2013, 43 (6): 64- 67
ZHOU Xiang, ZHANG Qi-qi, ZHANG Jing-si, et al Survey and heat demand analysis of winter residential indoor environment in Shanghai[J]. Heating Ventilating and Air Conditioning, 2013, 43 (6): 64- 67
4 WU X, FANG L, OLESEN B W, et al Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems[J]. Building Services Engineering Research and Technology, 2018, 39 (1): 81- 97
doi: 10.1177/0143624417710105
5 MARQUEZ A A, LOPEZ J M C, HERNANDEZ F F, et al A comparison of heating terminal units: fan-coil versus radiant floor, and the combination of both[J]. Energy and Buildings, 2016, 138 (1): 621- 629
6 ASHRAE. 2009 ASHRAE handbook: fundamentals [M]. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2009.
7 李晓锋, 朱颖心. 示踪气体测量技术基本问题分析(一): 原理、办法与测量设备[C] // 全国暖通空调制冷1998年学术文集. 北京: 中国建筑工业出版社, 1998: 69-73.
LI Xiao-feng, ZHU Ying-xin. Analysis of basic problems in tracer gas measurement technology (I): principles, methods and measuring equipment [C] //National Academic Collection of HVAC. Beijing: China Architecture and Building Press, 1998: 69-73.
8 LAUSSMANN D, HELM D. Air change measurements using tracer gases. chemistry, emission control, radioactive pollution and indoor air quality [M/OL]. Rijeka: InTech, 2011: 365-404. https://edoc.rki.de/bitstream/handle/176904/973/27OA2TGPWvv0.pdf.
9 FUJIKAWA M, YOSHINO H, TAKAKI R, et al Experimental study of the multi-zonal airflow measurement method using human expiration[J]. Journal of Environmental Engineering, 2010, 75 (652): 499- 508
doi: 10.3130/aije.75.499
10 齐美薇, 李晓锋, 黄河 示踪气体法利用人体作为CO2释放源测量宿舍换气次数的方法探究 [J]. 建筑科学, 2013, 29 (6): 52- 57
QI Mei-wei, LI Xiao-feng, HUANG He Discussion on measuring ventilation rates of dorms through tracer gas method with human body as CO2 release source [J]. Building Science, 2013, 29 (6): 52- 57
doi: 10.3969/j.issn.1002-8528.2013.06.011
11 李严, 李晓锋 北京地区居住建筑夏季自然通风实测研究[J]. 暖通空调, 2013, (12): 46- 50
LI Yan, LI Xiao-feng Field testing of natural ventilation of residential buildings in Beijing in Summer[J]. Heating Ventilating and Air Conditioning, 2013, (12): 46- 50
12 GUO L Y, LEWIS O J Carbon dioxide concentration and its application on estimating the air change rate in typical Irish houses[J]. The International Journal of Ventilation, 2007, 6 (3): 235- 245
doi: 10.1080/14733315.2007.11683780
[1] 陆江,王登辉,赵康,刘诗韵. 自保温建筑不同末端间歇供暖的实测效果分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2092-2099.
[2] 傅新, 钱晓倩, 钱匡亮, 董凯, 阮方. 夏热冬冷地区采暖空调计算期确定方法[J]. 浙江大学学报(工学版), 2017, 51(4): 729-738.
[3] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[4] 朱炜, 王竹, 田轶威, 等. 夏热冬冷地区民居夏季环境实测及构造分析——以湖州市为例[J]. J4, 2009, 43(8): 1526-1531.