Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (6): 1201-1208    DOI: 10.3785/j.issn.1008-973X.2018.06.020
工程力学     
自由液面水流与固体构筑物作用的高精度数值模拟
高冠, 朱瑞, 贺治国, 游景皓
浙江大学 海洋学院, 浙江 舟山 316000
Numerical simulation of free surface flow over solid obstacles based on high-order accurate scheme
GAO Guan, ZHU Rui, HE Zhi-guo, YU Ching-hao
Ocean College, Zhejiang University, Zhoushan 316000, China
 全文: PDF(4639 KB)   HTML
摘要:

采用界面保持水平集法捕捉自由液面,结合浸入边界法处理固液交界面的方式,开展自由液面水流经过固定障碍物的复杂流场模拟.在计算过程中,将障碍物对水流的影响用虚拟力的形式加入到流场求解中.求解水平集函数时,使用迎风紧致差分格式,以得到高精度的解.为了确保界面始终处于一个非常薄的厚度,在每个计算步长中对水平集函数进行重距离化处理,利用投影法求解Navier-Stokes方程中的压力项.通过将模型应用于计算带障碍物的典型溃坝问题,包括底床上的矩形和工程中常见的悬空支撑圆形障碍物,得到的数值结果与实验数据吻合较好,验证了该算法的准确性和稳定性.

Abstract:

A sharp interface capturing method was presented to simulate free surface flow over a stationary obstacle. The efficient interface preserving level set method was used and immersed boundary method was interpolated to handle the air-water and solid-fluid interface. The artificial momentum forcing term was applied at computational nodes where the solid obstacle presented to solve the velocity field, accounting for the impact of the obstacle. The upwinding combined compact difference scheme was adapted to approximate spatial derivative terms in level set function in order to accurately predict the air-water interface. The re-initialization equation for distance function was used to ensure interface front with a very thin thickness. The pressure field of Navier-Stokes equations was effectively solved by the projection method. Two typical cases of the flow propagating over different obstacles, including rectangular and circular cross-sections, were simulated by the method. The numerical results accorded well with the experimental results. The method can accurately simulate the complicated free surface flow with good stability.

收稿日期: 2017-03-03 出版日期: 2018-06-20
CLC:  O357  
基金资助:

国家自然科学基金资助项目(11672267);浙江省杰出青年基金资助项目(LR16E090001);浙江省重大科技专项资助项目(2015C03015).

通讯作者: 游景皓,男,讲师.     E-mail: chyu@zju.edu.cn
作者简介: 高冠(1991-),男,硕士,从事计算流体研究.orcid.org/0000-0001-9674-4319.E-mail:21434016@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

高冠, 朱瑞, 贺治国, 游景皓. 自由液面水流与固体构筑物作用的高精度数值模拟[J]. 浙江大学学报(工学版), 2018, 52(6): 1201-1208.

GAO Guan, ZHU Rui, HE Zhi-guo, YU Ching-hao. Numerical simulation of free surface flow over solid obstacles based on high-order accurate scheme. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1201-1208.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.06.020        http://www.zjujournals.com/eng/CN/Y2018/V52/I6/1201

[1] YANG J, STERN F. Sharp interface immersed-boundary/level-set method for wave-body interactions[J]. Journal of Computational Physics, 2009, 228(17):6590-6616.
[2] YOUNGS D L. Time-dependent multi-material flow with large fluid distortion[M]//Numerical Methods in Fluid Dynamics. Cambridge:Academic Press, 1982:273-285.
[3] XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function[J]. International Journal for Numerical Methods in Fluids, 2005, 48(9):1023-1040.
[4] YOKOI K. Efficient implementation of THINC scheme:a simple and practical smoothed VOF algorithm[J]. Journal of Computational Physics, 2007, 226(2):1985-2002.
[5] HOLM E J, LANGTANGEN H P. A method for simulating sharp fluid interfaces in groundwater flow[J]. Advances in Water Resources, 1999, 23(1):83-95.
[6] GRILLO A, LOGASHENKO D, STICHEL S, et al. Simulation of density-driven flow in fractured porous media[J]. Advances in Water Resources, 2010, 33(12):1494-1507.
[7] FROLKOVI P. Application of level set method for groundwater flow with moving boundary[J]. Advances in Water Resources, 2012, 47(10):56-66.
[8] YUE W, LIN C L, PATEL V C. Numerical simulation of unsteady multidimensional free surface motions by level set method[J]. International Journal for Numerical Methods in Fluids, 2003, 42(8):853-884.
[9] 李向阳,王跃发,禹耕之,等.改进水平集法模拟不可压缩两相流动时质量守恒的体积校正法[J]. 中国科学B辑:化学,2008(7):636-644. LI Xiang-yang, WANG Yue-fa, YU Geng-zhi, et al. Volume correction for mass conversation in simulation of incompressible two-phase flow by improving the level set method[J]. Science in China (Ser. B:Chemistry), 2008(7):636-644.
[10] SUSSMAN M, PUCKETT E G. A coupled level set and volume-of-fluid Method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2):301-337.
[11] WANG Z, YANG J, KOO B, et al. A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves[J]. International Journal of Multiphase Flow, 2009, 35(3):227-246.
[12] SUSSMAN M, FATEMI E. An efficient interface-preserving level set redistancing algorithm and Its application to interfacial incompressible fluid flow[J]. Siam Journal on Scientific Computing, 1999, 20(4):1165-1191.
[13] WANG Z, YANG J, STERN F. An improved particle correction procedure for the particle level set method[J]. Journal of Computational Physics, 2009, 228(16):5819-5837.
[14] MERRIMAN B, BENCE J K, OSHER S J. Motion of multiple junctions:a level set approach[J]. Journal of Computational Physics, 1994, 112(2):334-363.
[15] ZHAO H K, CHAN T, MERRIMAN B, et al. A variational level set approach to multiphase motion[J]. Journal of Computational Physics, 1996, 127(1):179-195.
[16] YOKOI K. A variational approach to multi-phasemotion of gas, liquid and solid based on the level set method[J]. Computer Physics Communications, 2009, 180(7):1145-1149.
[17] ZHANG Y. A level set immersed boundary method for water entry and exit[J]. Communications in Computational Physics, 2010, 8(2):265-288.
[18] YANG J, STERN F. Sharp interface immersed-boundary/level-set method for wave-body interactions[J]. Journal of Computational Physics, 2009, 228(17):6590-6616.
[19] YANG J, BALARAS E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries[J]. Journal of Computational Physics, 2006, 215(1):12-40.
[20] YANG J, STERN F. A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions[J]. Journal of Computational Physics, 2012, 231(15):5029-5061.
[21] CHIU P H, LIN R K, SHEU T W H. A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier-Stokes equations in time-varying complex geometries[J]. Journal of Computational Physics, 2010, 229(12):4476-4500.
[22] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1):146-159.
[23] YOKOI K. A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model:numerical simulations of droplet splashing[J]. Journal of Computational Physics, 2013, 232(1):252-271.
[24] CHU P C, FAN C. A three-point combined compact difference scheme[J]. Journal of Computational Physics, 1998, 140(2):370-399.
[25] CHIU P H, SHEU T W H. On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation[J]. Journal of Computational Physics, 2009, 228(10):3640-3655.
[26] YU C H, WANG D, HE Z, et al. An optimized dispersion-ralation-preserving combined compact difference scheme to solve advection equations[J]. Journal of Computational Physics, 2015, 300(C):92-115.
[27] MCLACHLAN R I. Area preservation in computational fluid dynamics[J]. Physics Letters A, 1999,264(1):36-44.
[28] JIANG G S, PENG D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. Siam Journal on Scientific Computing, 1970, 21(6):2126-2143.
[29] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471.
[30] TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192(2):593-623.
[31] CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968,22(104):17-34.
[32] KOSHIZUKA S, TAMAKO H, OKA Y. A particle method for incompressible viscous flow with fluid fragmentation[J]. Comput Fluid Dynamics Journal, 1995, 4:29-46.
[33] 卢雨, 胡安康, 刘亚冲. 基于有限点法的自由面流动的数值模拟[J]. 浙江大学学报:工学版. 2016, 50(1):55-62. LU Yu, HU An-kang, LIU Ya-chong. Numerical simulation of free surface flow based on finite point method[J]. Journal of Zhejiang University:Engineering Science. 2016, 50(1):55-62.

No related articles found!