Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (6): 1194-1200    DOI: 10.3785/j.issn.1008-973X.2018.06.019
工程力学     
Prony级数形式的形状记忆聚合物有限应变黏弹性本构模型
樊鹏玄1, 陈务军1, 赵兵1, 胡建辉1, 张大旭1, 房光强2, 彭福军2
1. 上海交通大学 空间结构研究中心, 上海 200240;
2. 上海宇航系统工程研究所, 上海 201108
Finite strain viscoelastic model of shape memory polymer in Prony series form
FAN Peng-xuan1, CHEN Wu-jun1, ZHAO Bing1, HU Jian-hui1, ZHANG Da-xu1, FANG Guang-qiang2, PENG Fu-jun2
1. Space Structure Research Center-SSRC, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Aerospace System Engineering Shanghai, Shanghai 201108, China
 全文: PDF(2364 KB)   HTML
摘要:

为考察形状记忆聚合物(SMPs)的有限应变力学特性,将SMPs材料的弹性响应采用Neo-Hookean超弹性本构方程描述,黏性响应采用Prony级数描述,从经典遗传积分形式的黏弹性本构方程出发,推导出有限应变格式的黏弹性本构方程和相应的材料参数拟合公式.采用环氧基形状记忆树脂(ESMP)进行拉伸-松弛试验,利用推导的公式进行非线性拟合得到本构方程的参数.对不同温度下ESMP的黏弹性力学特性进行试验研究,表明在试验温度范围内随温度升高ESMP的初始模量降低,初始模量中黏性部分所占比例降低,但弹性部分模量值基本不变.针对三维的SMPs结构分析问题,基于所推导本构,应用ABAQUS软件建立数值模拟方法.对拉伸-松弛试验进行数值模拟,结果表明所推导的本构方程用于SMPs的大应变分析中具有较高准确性.此外,所推导的有限应变黏弹性本构方程及参数拟合公式也适用于具有黏弹性特点的其他各向同性高聚物.

Abstract:

To investigate the finite strain mechanical behavior of SMPs (shape memory polymers), a finite strain viscoelastic model was derived from the classical viscoelastic model in which the elastic and viscous mechanical response were formulated with Neo-Hookean hyperelastic model and Prony series respectively, and parameters fitting equations were derived in particular tensile case. Tension-relaxation tests of ESMP (epoxy shape memory polymer) were carried out to validate the proposed constitutive model, and the constitutive parameters were identified through nonlinear fitting using the derived parameters fitting equations. The experimental research on viscoelastic properties of ESMP at various temperatures was also conducted; the initial instantaneous modulus and the ratio of viscous modulus to the initial instantaneous modulus decrease when the temperature rises, but the elastic part modulus remains unchangeable. The numerical simulation method was developed by the proposed constitutive model and ABAQUS software, which could be used to solve three-dimensional problem of SMPs' structures. The tension-relaxation simulation tests were carried out, and comparisons between numerical simulations and experimental results demonstrates that the proposed constitutive model is reasonable in the finite strain analysis of SMPs structural problem. Meanwhile, the proposed method could be used in other kinds of isotropic viscoelastic polymers.

收稿日期: 2017-03-18 出版日期: 2018-06-20
CLC:  O48  
基金资助:

航天先进技术联合研究中心技术创新资助项目(USCAST2015-24,2016-21).

通讯作者: 陈务军,男,教授,博士.     E-mail: cwj@sjtu.edu.cn
作者简介: 樊鹏玄(1996-),男,博士生,从事智能材料与结构研究.orcid.org/0000-0002-1150-6088.E-mail:F.pxuan@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

樊鹏玄, 陈务军, 赵兵, 胡建辉, 张大旭, 房光强, 彭福军. Prony级数形式的形状记忆聚合物有限应变黏弹性本构模型[J]. 浙江大学学报(工学版), 2018, 52(6): 1194-1200.

FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing, HU Jian-hui, ZHANG Da-xu, FANG Guang-qiang, PENG Fu-jun. Finite strain viscoelastic model of shape memory polymer in Prony series form. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1194-1200.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.06.019        http://www.zjujournals.com/eng/CN/Y2018/V52/I6/1194

[1] KAROTHU D P, WESTON J, DESTA I T, et al. Shape-memory and self-healing effects in mechanosalient molecular crystals[J]. Journal of the American Chemical Society, 2016, 138(40):13298-13306.
[2] JI S, WANG J, OLAH A, et al. Triple-shape-memory polymer films created by forced-assembly multilayer coextrusion[J]. Journal of Applied Polymer Science. 2017, 134(5):44405-44415.
[3] GARCIA-HUETE N, AXPE E, CUEVAS J M, et al. In situ measurements of free volume during recovery process of a shape memory polymer[J]. Polymer. 2017, 109:66-70.
[4] DIANI J, LIU Y, GALL K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers[J]. Polymer Engineering & Science. 2006, 46(4):486-492.
[5] CHEN Y C, LAGOUDAS D C, A constitutive theory for shape memory polymers. Part Ⅱ[J]. Journal of the Mechanics and Physics of Solids. 2008, 56(5):1766-1778.
[6] BHATTACHARYYA A, TOBUSHI H. Analysis of the isothermal mechanical response of a shape memory polymer rheological model[J]. Polymer Engineering and Science. 2000, 40(12):2498-2510.
[7] GU J, SUN H, FANG C. A finite deformation constitutive model for thermally activated amorphous shape memory polymers[J]. Journal of Intelligent Material Systems and Structures. 2015, 26(12):1530-1538
[8] 吕海宝,冷劲松,杜善义.形状记忆聚合物力学行为及其物理机制[J].固体力学学报.2017,38(1):1-12. LU Hai-bao, LENG Jing-song, DU Shan-yi. Working mechanism for the mechanical behavior of shape memory polymer[J]. Chinese Journal of Solid Mechanics, 2017, 38(1):1-12.
[9] 章巧芳,林文武,张钦,等.热驱动形状记忆聚合物三维力学本构模型[J].浙江工业大学学报.2015, 43(1):43-46. ZHANG Qiao-fang, LIN Wen-wu, ZHANG Qin, et al. 3D constitutive model of temperature-induced shape memory polymers[J]. Journal of Zhejiang University of Technology, 2015, 43(1):43-46.
[10] 周博,刘彦菊,冷劲松.形状记忆聚合物的宏观力学本构模型[J].中国科学:物理学力学天文学.2010,40(7):896-903. ZHOU Bo, LIU Yan-ju, LENG Jing-song. Macro constitutive model of shape memory polymers[J]. Scientia Sinica Phys, Mech & Astron, 2010, 40(7):896-903.
[11] 谭巧.形状记忆环氧聚合物及其复合材料的典型力学行为研究[D].哈尔滨:哈尔滨工业大学, 2015. TAN Qiao. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin:Harbin Institute of Technology, 2015.
[12] 时光辉.形状记忆聚合物及其智能结构热力学行为研究[D].北京:北京工业大学,2013. SHI Guang-hui. Thermomechanical properties of shape memory polymer and its smart structures[D]. Beijing:Beijing University of Technology, 2013.
[13] 刘猛,付翔,朱曜峰,等.基于相变理论的形状记忆聚氨酯的本构方程的构建[J].浙江理工大学学报:自然科学版,2016,35(4):559-564. LIU Meng, FU Xiang, ZHU Yao-feng, et al. Constitutive model of shape memory polyurethanes based on phase transformation theory[J]. Journal of Zhejiang Sci-Tech University:Natural Sciences, 2016, 35(4):559-564.
[14] BAGHANI M, NAGHDABADI R, ARGHAVANI J, et al. A thermodynamically-consistent 3D constitutive model for shape memory polymers[J]. International Journal of Plasticity, 2012, 35:13-30.
[15] DIANI J, GILORMINI P, FREDY C, et al. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity[J]. International Journal of Solids and Structures, 2012, 49(5):793-799.
[16] YU K, GE Q, QI H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communications, 2014, 5:3066.
[17] 罗玲.基于黏弹性理论的树脂及其纤维复合材料的形状记忆数值模拟[D].济南:山东大学, 2013. LUO Ling. Simulation of shape memory properties for resin and their fiber reinforced composites based on viscoelasticity[D]. Jinan:Shandong University, 2013.
[18] GUTIERREZ-LEMINI D. Engineering viscoelasticity[M]. New York:Springer Science & Business Media, 2014:116-138.
[19] DASSUALT S. Abaqus theory guide. Providence:Dassault Systemes Simulia Corporation, 2016:4821-4826.
[20] 郑宁.高应变形状记忆聚合物[D].杭州:浙江大学,2016. ZHENG Ning. High strain shape memory polymers[D]. Hangzhou:Zhejiang University, 2016.
[21] 游晋,房光强,陈务军,等.形状记忆环氧树脂及其碳纤维织物增强环氧树脂的动态力学性能[J].复合材料学报,2016:1-7. YOU Jin, FANG Guang-qiang, CHEN Wu-jun, et al. Dynamic mechanical properties of shape memory epoxy polymer and 4-harness satin carbon fiber weave reinforced composites[J]. Acta Materiae Compositae Sinca, 2017, 34(1):1-7.
[22] BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures[M]. 2nd edition. Chichester:John Wiley & Sons, Ltd, 2013:69-81.

No related articles found!