Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 97-105    DOI: 10.3785/j.issn.1008-973X.2018.01.014
土木工程、交通工程     
钢绞线锈蚀产物填充及裂缝宽度预测
戴理朝, 王磊, 张建仁, 羊日华
长沙理工大学 土木与建筑学院, 湖南 长沙 410114
Filling of strand corrosion products and crack width prediction
DAI Li-zhao, WANG Lei, ZHANG Jian-ren, YANG Ri-hua
School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(4039 KB)   HTML
摘要:

针对钢绞线锈蚀导致混凝土开裂的现象,通过试验研究钢绞线锈蚀产物在裂缝中的填充及锈胀裂缝的开裂情况,分析箍筋对锈蚀产物填充及混凝土开裂的抑制作用.考虑锈蚀产物填充比例和钢绞线捻制形状等因素,建立锈胀裂缝宽度预测模型,基于试验结果对该模型进行验证.研究表明,锈胀裂缝开裂角的正切值随锈蚀率的增加而增大,箍筋能够有效限制裂缝扩展和铁锈填充.锈蚀产物的填充随裂缝宽度的增加而变化,裂缝宽度达到临界值前,铁锈填充深度随裂缝宽度的增长而增大;裂缝宽度超过临界值后,铁锈填充深度基本保持为常值.建立的模型能够有效地预测锈胀裂缝宽度,合理地考虑铁锈填充可以提高预测模型的精度.

Abstract:

An experimental study was designed to analyze the filling extent of strand corrosion products in the cracks and the angle of concrete cracking aiming at the problem that strand corrosion would induce the concrete cracking. The restraint effect of stirrups on filling of corrosion products and concrete cracking was analyzed. A prediction model of crack width was proposed considering the filling extent of corrosion products and the twisting shape of strand. The model was verified by the experimental results. Results show that the tangent of cracking angle increases with increasing corrosion loss. Stirrups can significantly restrain the crack propagation and the filling of corrosion products. The filling extent of corrosion products varies with the increase of crack width. The filling extent of corrosion products increases with increasing crack width before the crack width reaches the critical value. The filling extent of corrosion products maintains as the constant after the crack width reaches the critical value. The prediction model can effectively predict the corrosion-induced crack width. The filling of corrosion products should be reasonably considered to improve the precision of the model.

收稿日期: 2017-05-11 出版日期: 2017-12-15
CLC:  TU375  
基金资助:

国家"973"重点基础研究发展规划资助项目(2015CB057705);国家自然科学基金资助项目(51678069);湖南省杰出青年基金资助项目(14JJ1022).

通讯作者: 王磊,男,教授,博导.orcid.org/0000-0002-5468-3519.     E-mail: leiwlei@hotmail.com
作者简介: 戴理朝(1988-),男,博士生,从事桥梁耐久性的研究.orcid.org/0000-0001-6896-8331.E-mail:lizhaod@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.

DAI Li-zhao, WANG Lei, ZHANG Jian-ren, YANG Ri-hua. Filling of strand corrosion products and crack width prediction. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 97-105.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/97

[1] 毛江鸿,陈佳芸,崔磊,等. 氯盐侵蚀钢筋混凝土锈胀开裂监测及预测方法[J]. 建筑材料学报, 2016, 19(1):59-64. MAO Jiang-hong, CHEN Jia-yun, CUI Lei, et al. Monitoring and predicting method for reinforced concrete expansion and cracking induced by chloride erosion[J]. Journal of Building Materials, 2016, 19(1):59-64.
[2] 王晓舟,金伟良,延永东. 混凝土结构锈胀开裂预测的路径概率模型[J]. 浙江大学学报:工学版, 2010, 44(6):1191-1196. WANG Xiao-zhou, JIN Wei-liang, YAN Yong-dong. Path probability model of corrosion-crack assessment for existing reinforced concrete structures[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(6):1191-1196.
[3] LI Fu-min, YUAN Ying-shu, LI C Q. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack[J]. Construction and Building Materials, 2011, 25(10):3878-3885.
[4] 王治,金贤玉,付传清,等. 基于损伤的钢筋混凝土锈胀开裂模型[J]. 建筑结构学报, 2014, 35(9):115-122. WANG Zhi,JIN Xian-yu,FU Chuan-qing,et al. Concrete cracking model for rust expansion based on damage[J]. Journal of Building Structures, 2014, 35(9):115-122.
[5] ZHAO Yu-xi, JIN Wei-liang. Modeling the amount of steel corrosion at the cracking of concrete cover[J]. Advance in Structural Engineering, 2006, 9(5):687-696.
[6] BAZANT Z. Physical model for steel corrosion in concrete sea structures:theory[J]. Journal of the Structural Division, 1979, 105(6):1155-1166.
[7] ZHAO Yu-xi, YU Jiang, HU Bing-yan, et al.Crack shape and rust distribution in corrosion-induced cracking concrete[J]. Corrosion Science, 2012, 55:385-393.
[8] LU Chun-hua, JIN Wei-liang, LIU Rong-gui.Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures[J]. Corrosion Science, 2011, 53(4):1337-1347.
[9] ŠAVIJA B, LUKOVIC M, HOSSEINI S, et al.Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS)[J]. Materials and Structures, 2015, 48(7):2043-2062.
[10] JAFFER S J, HANSSON C M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions[J]. Cement and Concrete Research, 2009, 39(2):116-125.
[11] 吴灵杰,寇新建,周拥军,等. 既有钢筋混凝土码头保护层锈胀开裂计算时长对比[J]. 哈尔滨工业大学学报, 2016, 48(12):51-55. WU Ling-jie,KOU Xin-jian,ZHOU Yong-jun,et al. Propagation assessment of existing concrete dock based on concrete cover corrosion-crack[J]. Journal of Harbin Institute of Technology, 2016, 48(12):51-55.
[12] TORRES-ACOSTA A A, NAVARRO-GUTIERREZ S, TERAN-GUILLEN J. Residual flexure capacity of corroded reinforced concrete beams[J]. Engineering Structures, 2007, 29(6):1145-1152.
[13] LI C Q, YANG S T. Prediction of concrete crack width under combined reinforcement corrosion and applied load[J]. Journal of Engineering Mechanics, 2011, 137(11):722-731.
[14] KHAN I, FRANCOIS R, CASTEL A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams[J]. Cement and Concrete Research, 2014, 56:84-96.
[15] DAI Li-zhao, WANG Lei, ZHANG Jian-ren, et al.A global model for corrosion-induced cracking in prestressed concrete structures[J]. Engineering Failure and Analysis, 2016, 62:263-275.
[16] FARROW W C, HIGGINS C. Tests of reinforced concrete beams with corrosiondamaged stirrups[J]. ACI Structural Journal, 2006, 103(1):133-141.
[17] OH B H, KIM E S, CHOI Y C. Theoretical analysis of transfer lengths in pretensioned prestressed concrete members[J]. Journal of Engineering Mechanics, 2006, 132(10):1057-1066.
[18] ALBERTO T R, CANH N D, HALE W M, et al. A higher-order equation for modeling strand bond in pretensioned concrete beams[J]. Engineering Structures, 2017, 131:345-361.
[19] MAADDAWY T E, SOUDKI K. A model for prediction of time from corrosion initiation[J]. Cement and Concrete Composites, 2007, 29(3):168-175.

[1] 王海龙, 凌佳燕, 孙晓燕, 李晓滨. 不锈钢筋混凝土柱小偏心受压性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1919-1925.
[2] 刘鑫, 陆洲导, 蔡自伟, 李凌志. 梁侧锚钢加固钢筋混凝土梁火灾后受剪性能[J]. 浙江大学学报(工学版), 2018, 52(5): 853-863.
[3] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[4] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.
[5] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[6] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[7] 郁杨天, 章青, 顾鑫. 近场动力学与有限单元法的混合模型与隐式求解格式[J]. 浙江大学学报(工学版), 2017, 51(7): 1324-1330.
[8] 金立兵, 金伟良, 王海龙, 夏晋. 多重环境时间相似理论及其应用[J]. J4, 2010, 44(4): 789-797.