Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2348-2354    DOI: 10.3785/j.issn.1008-973X.2017.12.006
土木与交通工程     
高温冷却后奥氏体不锈钢力学性能试验研究
范圣刚1,2, 张岁寒2, 孟畅2
1. 东南大学 混凝土及预应力混凝土结构教育部重点实验室, 江苏 南京 210096;
2. 东南大学土木工程学院, 江苏 南京 210096
Experimental investigation on mechanical properties of austenitic stainless steel with elevated temperature cooling
FAN Sheng-gang1,2, ZHANG Sui-han2, MENG Chang2
1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China;
2. School of Civil Engineering, Southeast University, Nanjing 210096, China
 全文: PDF(2519 KB)   HTML
摘要:

基于奥氏体不锈钢S30408材料,研究不同温度工况下冷却后不锈钢材料的力学性能.考察空气中自然冷却和浸水冷却这2种方式对材料力学性能的影响,获取高温冷却后不锈钢材料的力学性能指标(弹性模量、名义屈服强度、抗拉极限强度和断后延伸率等)与相应的折减系数,并将试验结果和已有同类试验结果进行对比.结果表明:不同温度工况对不锈钢材料应力-应变曲线中应变值较大(>20%)的区段有着较为显著的影响;当温度工况<600℃时,不同温度工况和不同冷却方式对不锈钢材料的力学性能影响较小;当温度工况≥ 600℃时,不同温度工况和不同冷却方式对材料的弹性模量、名义屈服强度和断后延伸率存在着影响,且材料的抗拉极限强度随温度升高略为增长,但不同冷却方式对材料的抗拉极限强度几乎没有影响.

Abstract:

Based on S30408 austenitic stainless steel, the tensile tests on flat specimen were conducted to investigate behaviors of stainless steel after cooling down from various temperatures, and the influence from two cooling conditions (cooling in air and cooling in water) of material were inspected. The mechanical performance indexes, including elasticity modulus, offset yield strength, ultimate strength and elongation at break, were obtained, together with their reduction coefficient compared with indexes at room temperature. Comparison was made between the experiment results and the results of similar tests. The results indicate that, various heating temperatures have significant effect on the part with higher strain value (more than 20%) in strain-stress curve. When heating temperatures are under 600℃, the mechanical properties of stainless steel change little with the increase of temperatures or with the switch of cooling conditions. However, when heating temperatures are greater than or equal to 600℃, the variation of both temperatures and cooling methods obviously affects elasticity modulus, offset yield strength and elongation at break. Ultimate strength increases slightly with the growing temperatures above 600℃, but almost remains unchanged between different cooling conditions.

收稿日期: 2016-12-05 出版日期: 2017-11-22
CLC:  TU375.4  
基金资助:

国家自然科学基金资助项目(51378105,51578134);江苏省“青蓝工程”中青年学术带头人资助项目(2016);江苏省“六大人才高峰”高层次人才选拔培养资助项目(2016).

作者简介: 范圣刚(1974-),男,教授,从事钢结构与不锈钢结构抗火研究.orcid.org/0000-0003-0681-258X.E-mail:101010393@seu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.

FAN Sheng-gang, ZHANG Sui-han, MENG Chang. Experimental investigation on mechanical properties of austenitic stainless steel with elevated temperature cooling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2348-2354.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.006        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2348

[1] 范圣刚,郑宝锋,刘美景,等.卷边C型截面不锈钢短柱承载力直接强度法研究[J].东南大学学报:自然科学版,2013, 44(6):112-116. FAN Sheng-gang, ZHENG Bao-feng, LIU Mei-jing, et al. Study on direct strength method of capacity of stainless steel lipped C section stub columns[J]. Journal of Southeast University:Natural Science Edition, 2013,44(6):112-116.
[2] 王元清,袁焕鑫,石永久,等.不锈钢结构的应用和研究现状[J].钢结构,2010,130(25):1-12. WANG Yuan-qing, YUAN Huan-xin, SHI Yong-jiu, et al. A review of current applications and research of stainless steel structure[J]. Steel Construction, 2010, 130(25):1-12.
[3] WALLER G, COCHRANE D J. Stainless steel for durability, fire-resistance and safety[J]. Architecture Technique, 2011, 9:254-257.
[4] FAN S G, LIU F, ZHENG B F, et al. Experimental study on bearing capacity of stainless steel lipped C section stub columns[J]. Thin-Walled Structures, 2014, 83:70-84.
[5] 陈驹,金伟良,杨立伟.建筑用不锈钢的抗火性能[J].浙江大学学报:工学版,2008,42(11):1983-1989. CHEN Ju, JIN Wei-liang, YOUNG Ben. Behaviour of constructional stainless steel at elevated temperatures[J]. Journal of Zhejiang University:Engineering Science, 2008, 44(11):1983-1989.
[6] SAKUMOTO Y, NAKZATO T, MATSUZAKI A. High-temperature properties of stainless steel for building structures[J]. Journal of Structural Engineering, 1996, 122(4):399-406.
[7] OLSSON A. Stainless steel plasticity-material modeling and structural applications[D]. Sweden:Luleå University of Technology, 2001.
[8] RASMUSSEN K J R. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(4):47-61.
[9] GARDNER L. A new approach to stainless steel structural design[D]. London:Imperial College, 2002.
[10] 朱浩川,姚谏.不锈钢材料的应力-应变模型[J].空间结构,2011,17(1):62-69. ZHU Hao-chuan, YAO Jian. Stress-strain model for stainless steel[J]. Spatial Structures, 2011, 17(1):62-69.
[11] 张有桔,朱跃,赵升,等.高温后不同冷却条件下钢材力学性能试验研究[J].结构工程师, 2009, 25(5):104-109. ZHANG You-jie, ZHU Yue, ZHAO Sheng, et al. Experimental research on mechanical properties of steel cooled in different modes after high temperature treatment[J]. Structural Engineers, 2009, 25(5):104-109.
[12] 王卫永,刘天姿.高强Q460钢高温冷却后力学性能研究[J].建筑材料学报, 2016, 19(1):171-176. WANG Wei-yong, LIU Tian-zi. Study on mechanical properties of high strength Q460 steel after cooling from high temperature[J]. Journal of Building Materials, 2016, 19(1):171-176.
[13] 陈建锋,曹平周.高温后结构钢力学性能试验[J].解放军理工大学学报:自然科学版,2010,11(3):328-333. CHEN Jian-feng, CAO Ping-zhou. Experimental investigation into mechanical properties of steel post high temperatures[J]. Journal of PLA University of Science and Technology:Natural Science Edition, 2010, 11(3):328-333.
[14] 陈伟,叶继红.G550高强度冷成型钢高温力学性能稳态试验研究[J].土木工程学报,2012,45(6):33-42. CHEN Wei, YE Ji-Hong. Steady state experimental investigation of G550 high strength cold-formed steel material at elevated temperatures[J]. China CivilEngineering Journal, 2012, 45(6):33-42.
[15] 陈伟,叶继红.G550高强度冷成型钢高温力学性能瞬态试验研究[J].土木工程学报,2012,45(7):56-64. CHEN Wei, YE Ji-Hong. Transient state experimental investigation of G550 high strength cold-formed steel material at elevated temperatures[J]. China Civil Engineering Journal, 2012, 45(7):56-64.
[16] 余志武,王中强,史召锋.高温后新Ⅲ级钢筋力学性能的试验研究[J].建筑结构学报,2005,26(2):112-116. Yu Zhi-wu, WANG Zhong-qiang, SHI Zhao-feng. Experimental research on material properties of new Ⅲ grade steel bars after fire[J]. Journal of Building Structures, 2005, 26(2):112-116.
[17] GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法[S].北京,中国标准出版社,2010.
[18] 范圣刚,郑家珵,孙文隽,等.S30408奥氏体不锈钢高温力学性能试验研究[J].工程力学, 2017, 34(4):167-176. FAN Sheng-gang, ZHENG Jia-cheng, SUN Wen-jun, et al. Experimental investigation on mechanical properties of S30408 austenitic stainless steel at elevated temperatures[J]. Engineering Mechanics, 2017, 34(4):167-176.
[19] WANG X Q, TAO Z, SONG T Y, et al. Stress-strain model of austenitic stainless steel after exposure to elevated temperatures[J]. Journal of Constructional Steel Research, 2104, 99(8):129-139.

No related articles found!