Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 166-173    DOI: 10.3785/j.issn.1008-973X.2018.01.022
自动化技术     
基于自适应透射率比的水下图像复原算法
黄松, 易本顺
武汉大学 电子信息学院, 湖北 武汉 430072
Underwater image restoration algorithm based on adaptive transmission ratio
HUANG Song, YI Ben-shun
School of Electronic Information, Wuhan University, Wuhan 430072, China
 全文: PDF(3922 KB)   HTML
摘要:

为了解决水下图像模糊和偏色的问题,在水下图像成像模型的基础上提出水下图像复原算法.利用白平衡算法对图像进行色彩调整,计算图像的暗通道图,通过暗通道图估计图像的背景光强度.对于非深海区域的图像,若图像包含水体,则根据水体的颜色和纹理特征提取出图像中的水体部分,利用光在水中的衰减公式计算图像3个通道透射率之间的关系;若图像不包含水体,则根据3个通道直方图的分布计算透射率之间的关系.根据暗通道先验的原理,计算出3个通道的透射率图,使用引导滤波对透射率图进行细化.根据计算出的背景光强度和透射率对图像进行复原.对于采用人工照明的深海图像,采用修正的公式进行处理.实验结果表明,在图像清晰度的评价中,该算法优于对比算法,具有较好的鲁棒性.

Abstract:

An underwater image restoration algorithm was proposed based on underwater image model in order to solve the problems of underwater image blurring and color cast. The algorithm used the white balance algorithm to adjust the color of the image and calculated the dark channel image of the original image. Then the background light intensity of the image was estimated by the dark channel map. For the image of the non-deep region, if the image contained water body, the water body part of the image was extracted according to the color and texture features. Then the relation of three channels' transmission was calculated by using the light attenuation formula in water. If the image did not contain the water body, the transmittance of the three channels was calculated according to the distribution of the three channel histograms. The transmission map of the three channels was calculated according to the principle of the dark channel priori, and the guide filter was used to refine the transmission map. The image was restored according to the value of background light intensity and transmission map. The modified formula was adopted for deep sea images with artificial illumination. Experimental results show that the algorithm is superior to the contrast algorithm in image clarity evaluation and has good robustness.

收稿日期: 2016-12-12 出版日期: 2017-12-15
CLC:  TP391  
基金资助:

深圳市基础研究资助项目(JCYJ20150630153917254).

通讯作者: 易本顺,男,教授.orcid.org/0000-0002-5942-6116.     E-mail: yibs@whu.edu.cn
作者简介: 黄松(1993-),男,硕士生,从事视频图像处理的研究.orcid.org/0000-0002-0070-5727.E-mail:2011301200090@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

黄松, 易本顺. 基于自适应透射率比的水下图像复原算法[J]. 浙江大学学报(工学版), 2018, 52(1): 166-173.

HUANG Song, YI Ben-shun. Underwater image restoration algorithm based on adaptive transmission ratio. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 166-173.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.022        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/166

[1] DREWS P, NASCIMENTO E R, CAMPOS M F M, et al. Automatic restoration of underwater monocular sequences of images[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg:IEEE, 2015:1058-1064.
[2] ZHAO X W, JIN T, QU S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94(1):163-172.
[3] HONG S J, LIU P J, LIN J S. Improving the contrast enhancement of oceanic images using modified dark channel prior[C]//International Symposium on Computer, Consumer and Control. Xi'an:IEEE, 2016:801-804.
[4] LIU H, CHAU L P. Underwater image color correction based on surface reflectance statistics[C]//Pacific Signal and Information Processing Association Annual Summit and Conference. Hong Kong:IEEE, 2015:996-999.
[5] SCHETTINI R, CORCHS S. Underwater image processing:state of the art of restoration and image enhancement methods[J]. Advances in Signal Processing, 2010, 2010(1):1-14.
[6] 赵欣慰.水下成像与图像增强及相关应用研究[D]. 杭州:浙江大学,2015:3. ZHAO Xin-wei. Theresearch on underwater imaging, underwater image enhancement and relevant applications[D]. Hangzhou:Zhejiang University, 2015:3.
[7] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//Computer Vision and Pattern Recognition. Rhode island:IEEE, 2012:81-88.
[8] GALDRAN A, PARDO D, PICON A, et al. Automatic red-channel underwater image restoration[J]. Visual Communication and Image Representation, 2015, 26(1):132-145.
[9] CHIANG J Y, CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4):1755-1769.
[10] SERIKAWA S, LU H. Underwater image dehazing using joint trilateral filter[J]. Computers and Electrical Engineering, 2014, 40(1):41-50.
[11] LI C Y, GUO J C, CONG R M, et al. Underwater image enhancement by Dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12):5664-5677.
[12] CHEN Z, WANG H B, SHEN J, et al. Region-specialized underwater image restoration in inhomogeneous optical environments[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(9):2090-2098.
[13] GHANI A S A, ISA N A N. Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Applied Soft Computing, 2015, 27(1):219-230.
[14] 王子韬.基于暗原色方法的水下图像增强[D]. 青岛:中国海洋大学,2014:5. WANG Zi-tao. Underwater dark channel prior method of underwater image enhance[D]. Qingdao:Ocean University of China, 2014:5.
[15] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
[16] HAUTIERE N, TAREL J P, AUBERT D. Blind contrast enhancement assessment by gradient rationing at visible edges[J]. Image Analysis and Stereology, 2008, 27(2):87-95.
[17] BIANCO N C, MOHAN A, EUSTICE R M. Initial results in underwater single image dehazing[J]. Oceans, 2010, 27(3):1-8.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.